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Symmetry Properties of Rovibronic States of an X3 Molecule in an Upright Conical Potential
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The rovibronic structure of cone states of an X3 type molecule is investigated to provide a detailed
understanding of the effect of the geometrical phase. When compared to the rovibronic structure of a
system in which no geometrical effect is present, a dramatic duplication of the number of rotational
levels (k � 0) is observed for certain vibrational states (‘ � 0) including the vibrational ground state.
Rotational structure may serve as a diagnostic tool to detect the presence of a conical intersection.
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Introduction.—As shown by Jahn and Teller [1], a
symmetric nonlinear nuclear configuration of a molecule
in a degenerate electronic state is unstable. In the case of a
molecule in an E electronic state, distortion of the sym-
metric configuration leads to a splitting of the electronic
potential energy surface into two sheets. There is a conical
intersection of the two sheets at the symmetric configu-
rations. Since Longuet-Higgins et al. [2,3] have demon-
strated that the two adiabatic electronic wave functions,
which form the degenerate state, change sign when trans-
ported adiabatically on a closed loop around the conical
intersection, there exists a vast literature on the effect of
the geometrical phase; see [4] and references therein, in
particular, on the rovibrational states on the lower sheet of
the split potential energy surface. As far as the upper
sheet is concerned, to the best of our knowledge the
only reported results of a rovibronic calculation are those
on H3 due to Lepetit et al. [5]. Such cone states are of
course coupled to the lower sheet of the potential energy
surface and thus they are resonance states. However, they
are expected to be quite stable, as shown originally by
Slonczewski [6]. It is the purpose of the present Letter to
explore in detail the rovibrational structure of the cone
states. Following the definition of appropriate spectro-
scopic quantum numbers, we will establish a correlation
between rovibronic states with and without geometrical
phase to understand the effect of such a phase.

Vibronic cone states and their symmetry properties.—
The natural basis for a symmetry classification of the
vibronic cone states is the three-particle permutation
inversion group, S3 � I. The states can be labeled accord-
ing to the angular momentum quantum number J, their
irreducible representation, and the corresponding count-
ing index as �J;�; i�. The permutation inversion symme-
try can be exploited easily in hyperspherical coordinates,
so that the most efficient methods for the calculation of
the rovibronic states are those based on such coordinates.
Though the symmetry classification of the calculated
states within S3 � I is exact, it does not lead to an under-
standing of the rovibronic structure, and it is desirable to
have in addition a classification in terms of less rigorous
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spectroscopic quantum numbers. Watson [7] has studied
in detail the rovibrational structure of an X3 type mole-
cule and has devised a set of rotational quantum numbers
that hold if there is no geometrical effect (NGP case). If
such an effect is present (GP case), his quantum numbers
need to be revised. To obtain appropriate quantum num-
bers, consider the effect of the operators of S3 � I on a
conventional rovibronic basis,

jv1v2‘Jk�i � jv1v2‘ijJkie
i��: (1)

Here, v1 and v2 denote the quantum numbers of the
symmetric stretch and the degenerate bending vibration,
respectively, and ‘ the vibrational angular momentum
which takes the values ‘ � v2; v2 � 2; . . .� v2. J is the
total angular momentum and k its internal projection. The
electronic spin will not be considered here. ei�� is a phase
factor, where � is the phase angle and �, in general, is a
function in configuration space [8]. In its most basic form,
it may be chosen as a constant, taking the values zero
(NGP) or 1

2 (GP) such as to satisfy the cycling boundary
conditions. The symmetry operators of S3 � I affect the
phase angle � and the three Euler angles. Following
Longuet-Higgins et al. [2,3], Hougen [9,10], and Watson
[7] we obtain for the cyclic permutation operator (123)

�123�jv1v2‘i � e��2�i=3�‘jv1v2‘i (2)

and

�123�jJki � e�2�i=3�kjJki: (3)

In the above equations, we have observed the phase con-
vention in the � angle due to Longuet-Higgins et al. [2,3].
The effect of (123) on the combined functions of Eq. (1) is
thus

�123�jv1v2‘Jk�i � e�2�i=3��k�‘���jv1v2‘Jk�i: (4)

Permutation of particles 2 and 3 has the effect

�23�jv1v2‘Jk�i� ��1�J�kjJ;�kiei�‘jv1v2;�‘iei������

� ��1�Je�i��k�‘���jv1v2;�‘;J;�k;��i:

(5)
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TABLE I. Symmetry classification of the spectroscopic func-
tions, Eq. (11). Integer values of G correspond to the NGP case,
half integer values of G to the GP case.

��1�k � 1 ��1�k � �1

G � 0; 3; . . . A0
1=A

0
2 A00

1=A
00
2

G � 1; 4; . . . E0 E00

G � 2; 5; . . . E0 E00

G � 3
2 ;

9
2 ; . . . A0

1=A
0
2 A00

1=A
00
2

G � 1
2 ;

7
2 ; . . . E0 E00

G � 5
2 ;

11
2 ; . . . E0 E00

TABLE III. NGP rovibronic term values, in eV, of the lowest
states �v1; v

j‘j
2 � with ‘ � 1.

J G s � �0; 11� �1; 11� �2; 11� �3; 11�

0 1 E0 4.2886 4.4533 4.5980 4.7212

1 2 E00 4.2904 4.4550 4.5996 4.7275
1 1 E0 4.2955 4.4596 4.6036 4.7261
1 0 �1 A00

2 4.2969 4.4608 4.6047 4.7270
1 0 �1 A00

1 4.2971 4.4610 4.6049 4.7272

TABLE IV. GP rovibronic term values, in eV, of the lowest
j‘j�1=2 1
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Inversion of the coordinate system leaves the internal
coordinates unchanged, but affects the Euler angles [11]
and results in

E?jv1v2‘Jk�i � ��1�kjv1v2‘Jk�i: (6)

Since the parity is completely determined by k and since
the permutation operators conserve jkj, we can construct
the symmetrized functions by using the projection op-
erators of just the permutation group, S3. The effect of the
remaining permutation operators, �123�2, 12, and 13 can
be obtained in a straightforward manner from the above
equations and the relations

�12� � �123��23��123�2; �13� � �123�2�23��123�:

(7)

Finally, acting the projection operators of the irreducible
representations of S3 on the basis Eq. (1) yields

PA1=A2
jv1v2‘Jk�i � �1� a�jv1v2‘Jk�i

	 ��1�Jbjv1v2;�‘; J;�k;��i;

(8)

where the plus sign refers to A1 and the minus sign to
A2, and

PEjv1v2‘Jk�i � �2� a�jv1v2‘Jk�i; (9)

with the coefficients a and b obtained as a �

e�2�i=3��k�‘��� � e�4�i=3��k�‘��� and b � e�i�k�‘����1�
e�2�i=3��2k�2‘�2�� � e�2�i=3���2k�2‘�2���. In the case of the
geometrical phase effect, the coefficient b in Eq. (8) has
to be replaced by ib, since we have to use the characters of
the double valued representations (A1=A2 correspond to
TABLE II. NGP rovibronic term values, in eV, of the lowest
states �v1; v

j‘j
2 � with ‘ � 0.

J G s � �0; 00� �1; 00� �2; 00� �3; 00�

0 0 �1 A0
1 3.7210 3.9216 4.1067 4.2759

1 1 E00 3.7264 3.9266 4.1114 4.2802
1 0 �1 A0

2 3.7294 3.9284 4.1130 4.2817
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the double group representations E�
3=2=E

�
3=2; see Ref. [10]).

The two coefficients depend on g � k� ‘� �, which, in
view of Eq. (8), leads to the definition of

G � jk� ‘� �j; (10)

a quantity that will be discussed below. The numerical
values of the coefficients are found to be 
a �
2; b �or ib� � 3� for G � 0; 32 �mod3� and �a � �1; b �

0� for G � 1
2 ; 1; 2;

5
2 �mod3�, so that we obtain the desired

symmetrized spectroscopic functions as

jv1v2GJi	�
1���
2

p 
jv1v2;‘��ijJki

	��1�Jjv1v2;�‘��ijJ;�ki� (11)

�
1���
2

p 
jv1v2‘ijJki

	��1�Jjv1v2;�‘�2�ijJ;�ki�ei��: (12)

In Eq. (12), the geometrical phase factor ei�� has been
extracted from the basis kets to obtain an expression
similar to that given in Ref. [12]. The symmetry proper-
ties of the above functions are collected in Table I.

We will now turn our attention to the quantity G
defined above. Since G is only defined modulo 3, an
extended G cannot serve as a rigorous quantum number.
However, it is useful as a ‘‘good’’ quantum number, and
the functions of Eq. (11) have been constructed to define
the spectroscopic quantum numbers needed in a classifi-
cation of the exact ‘‘hyperspherical’’ states. The appear-
ance of the difference k� ‘ in the definition of G might
states �v1; v2 � with ‘ � 0 (j � 2 ).

J G U s � �0; 01=2� �1; 01=2� �2; 01=2� �3; 01=2�

0 1
2 E0 4.0215 4.2049 4.3710 4.5189

1 3
2 �1 A00

2 4.0243 4.2076 4.3734 4.5210

1 3
2 �1 A00

1 4.0256 4.2087 4.3744 4.5220

1 1
2 �1 E00 4.0284 4.2113 4.3768 4.5241

1 1
2 �1 E0 4.0286 4.2114 4.3769 4.5243
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TABLE V. GP rovibronic term values, in eV, of the lowest
states �v1; v

j‘j�1=2
2 � with ‘ � 1 (j � 3

2 ).

J G s � �0; 13=2� �1; 13=2�

0 3
2 �1 A0

1 4.5005 4.6425

0 3
2 �1 A0

2 4.5700 4.7177

1 5
2 E00 4.5050 4.6466

1 3
2 �1 A0

2 4.5071 4.6484

1 3
2 �1 A0

1 4.5768 4.7237

1 1
2 E00 4.5733 4.7223

TABLE VII. NGP/GP correlation between the ‘ � 0 rovi-
bronic states. For the one-dimensional representations �1=�2,
which are distinguished by s � 	1, the plus sign refers to �1

and the minus sign to �2.

J G U s � jkj G U s �

0 0 +1 A0
1 0 1

2 E0

1 1 E00 1 3
2 	1 A00

2=A
00
1

1 1
2 �1 E00

0 �1 A0
2 0 1

2 �1 E0

2 2 E0 2 5
2 E0

2 3
2 �1 	1 A0

1=A
0
2

1 E00 1 3
2 �1 	1 A00

1=A
00
2

1 1
2 �1 E00

0 �1 A0
1 0 1

2 �1 E0

3 3 	1 A00
2=A

00
1 3 7

2 E00

3 5
2 �1 E00

2 E0 2 5
2 �1 E0

2 3
2 �1 	1 A0

2=A
0
1

1 E00 1 3
2 �1 	1 A00

2=A
00
1

1 1
2 �1 E00

0 �1 A0
2 0 1

2 �1 E0

TABLE VIII. NGP/GP correlation between the ‘ � 1 rovi-
bronic states.

J G U s � jkj G U s �

0 1 E0 0 3
2 	1 A00

1=A
00
2

1 2 E00 1 5
2 E00

1 E0 0 3
2 	1 A0

2=A
0
1

0 	1 A00
2=A

00
1 1 1

2 E00

2 3 	1 A0
1=A

0
2 2 7

2 E0

2 E00 1 5
2 E00

1 �1 E0 0 3
2 	1 A0

1=A
0
2

1 �1 E0 2 1
2 �1 E0

0 	1 A00
1=A

00
2 1 1 �1 E00
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appear arbitrary, since it is due to different phase con-
ventions for the internal angle � and the Euler angle �. If
we had used identical phase conventions for the two
angles, we would have arrived at the expression G � jk�
‘� �j, which is equivalent to the definition Eq. (10)
because k and ‘ are signed quantities. Thus, there is no
ambiguity. For the treatment of GP states, where � � 1

2 , it
is useful to introduce the angular momentum j as

jjj � j‘j � � (13)

and to reexpress G as

G � jk� ‘� �j � jk� jj: (14)

The good quantum number G as defined here is a general-
ization of Watson’s quantum number, since it takes into
account the effect of the geometrical phase. Even though
this generalization may seem straightforward and stan-
dard methods of group theory were used to arrive at
Eqs. (11) and (14), we have presented the derivations in
some detail to demonstrate clearly the origin of the G
quantum number. This is important since, to the best of
our knowledge, the generalized G quantum number has
never been used to classify GP states and since there are
some peculiarities which do not occur in a NGP
classification.

A case study.—To illustrate the use of the G quantum
number, we have analyzed the resonance states in the
upper conical potential of H3. The positions of these
states have been calculated by Lepetit et al. [5] with a
hyperspherical method, and the states were assigned in
terms of v1, v2, j, J, and �. Based on their observation
that the GP effect produces a shift of about 1

2 �h!2, the
authors also presented an ordering scheme relating NGP
TABLE VI. Relation between the G quantum numbers in the
NGP and GP cases.

GNGP � jk� ‘j GGP � jk� jj Relation

G� � jkj � j‘j � jkj � jjj G�
GP � G�

NGP �
1
2

G� �

�
if k > ‘ jkj � j‘j
if k � ‘ j‘j � jkj

�

�
jkj � jjj G�

GP � G�
NGP �

1
2

jjj � jkj G�
GP � G�

NGP �
1
2
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and GP vibrational states. To gain additional insight, we
have now rearranged most of their data and display them
in separate tables according to the families �v1; v2 �
0; ‘ � 0�, �v1; v2 � 1; ‘ � 1� or �v1; v2 � 0; j � 1

2�,
2

3 4 E00 3 9
2 	1 A00

2=A
00
1

3 	1 A0
2=A

0
1 2 7

2 E0

2 �1 E00 1 5
2 E00

2 �1 E00 3 3
2 �1 	1 A00

2=A
00
1

1 �1 E0 0 3
2 �1 	1 A0

2=A
0
1

1 �1 E0 2 1
2 �1 E0

0 	1 A00
2=A

00
1 1 1

2 �1 E00
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TABLE IX. NGP/GP correlation between the ‘ � 2 rovi-
bronic states.

J G U s � jkj G U s �

0 2 E0 0 5
2 E0

1 3 A00
2=A

00
1 1 7

2 E00

2 E0 0 5
2 E0

1 E00 1 3
2 	1 A00

2=A
00
1

2 4 E0 2 9
2 	1 A0

1=A
0
2

3 A00
1=A

00
2 1 7

2 E00

2 E0 0 5
2 E0

1 E00 1 3
2 	1 A00

1=A
00
2

0 A0
1=A

0
2 2 1

2 E0

3 5 E00 3 11
2 E00

4 E0 2 9
2 	1 A0

2=A
0
1

3 A00
2=A

00
1 1 7

2 E00

2 E0 0 5
2 E0

1 �1 E00 1 3
2 	1 A00

2=A
00
1

1 �1 E00 3 1
2 �1 E00

0 A0
2=A

0
1 2 1

2 �1 E0
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�v1; v2 � 1; j � 3
2� to which they belong, Tables II, III, IV,

and V. Within these tables, the rovibronic states are as-
signed in terms of J and Watson’s [7] quantum numbers
G, U, and s. The s quantum number was introduced to
distinguish between the two nondegenerate states with
G�mod3� � 3. It corresponds to the positive or negative
Wang-type linear combinations in Eq. (11) and takes the
values s � 	��1�J. For ‘ � k � 0, only s � 1 exists. The
quantum number G itself is not unique, since states
derived from g � k� j and g � k0 � j with k0 �
k� 2j lead to the same value of G. Such states can be
distinguished by the quantum number U which takes the
values U � 	1. Note that in the NGP case, the U � 	1
states have the same parity, whereas in the GP case they
have different parity as here ��1�k � ��1�k�2j.

Turning our attention now again to Tables II, III, IV,
and V, we notice that for a given value of J, the rotational
energy generally increases with decreasing G, which
makes G a useful quantum number. Indeed, the appear-
ance in Table IVof two J � 1 states very close in energy,
those of symmetry E00 and E0, can be explained as due to
the fact that they have the same value of G. Note that the
states with A0

1 or A00
1 symmetry are unphysical since they

violate the Pauli principle, but are included in the tables
for the sake of completeness. The geometrical phase con-
24300
siderably complicates the rotational structure of the ‘ � 0
states; see Tables II and IV. To understand this, consider
the relation between the quantum numbers GNGP and GGP

as shown in Table VI. In general, forming all possible
combinations g � k� ‘ of the signed quantities k and ‘
yields two values of G for each set of (k; ‘). The analysis
presented in TableVI shows that each NGP state has a GP
counterpart, except for the case ‘ � 0. Here we find the
relations �GNGP � 0 , GGP �

1
2� and �GNGP � jkj � 0 ,

GGP � GNGP 	
1
2�. A correlation between the NGP and GP

rotational states can now be found by ordering each set of
states with respect to G and relating them through their
common values of jkj. Explicit results are presented in
Tables VII, VIII, and IX for ‘ � 0; 1; 2 and J � 3.

Conclusions.—It has been shown here that generalized
Watson type quantum numbers account for the rovibronic
structure of resonance states in a conical potential. Such
an analysis does not only apply to H3. There are other
important triatomic systems which show a conical inter-
section, such as the alkali trimers (see [4] for references)
which are isoelectronic with H3, or H3

� in its excited
electronic triplet state [13,14] and isoelectronic species,
to which such a symmetry classification should be
applied.
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