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The phase structure of a two-fluid bosonic system is investigated. The proton-neutron interacting boson
model possesses a rich phase structure involving three control parameters and multiple order parameters.
The surfaces of quantum phase transition between spherical, axially symmetric deformed, and SU�

���3�
triaxial phases are determined.
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The phase structure of quantum many-body systems has
in recent years been a subject of great experimental and
theoretical interest. Models based upon algebraic
Hamiltonians have found extensive application to the spec-
troscopy of many-body systems, including nuclei [1] and
molecules [2]. Applications to hadrons have also been
developed [3]. For certain specific forms of its
Hamiltonian, an algebraic model exhibits dynamical sym-
metries. In the classical limit, these dynamical symmetries
correspond to qualitatively distinct ground-state equilib-
rium configurations, which constitute the phases of the
system [4,5]. The phase structure has been studied in detail
for algebraic models describing systems composed of one
species of constituent particle (‘‘one-fluid’’ systems), in
particular, the interacting boson model (IBM) [1] for nu-
clei. While one-fluid systems are described by a single
elementary Lie algebra, usually U�n�, multifluid systems
are described by a coupling of such Lie algebras, U1�n� �
U2�n� � � � � [1,2]. This more involved algebraic structure
naturally leads to a richer phase structure.

In the present work, the phase structure of a system
comprised of two interacting fluids is investigated. The
proton-neutron interacting boson model (IBM-2) [1,6], in
which proton pairs and neutron pairs are treated as distinct
constituents, is considered. While the one-fluid IBM ex-
hibits three dynamical symmetries, separated by first- and
second-order phase transitions [5,7], the IBM-2 supports
four dynamical symmetries [8,9] and thus inherently has a
higher-dimensional phase diagram. Moreover, the phase
structure is found to possess qualitatively new features.
Because of the complexity of the problem, a combination
of analytic and numerical methods has been applied in this
analysis. Preliminary investigations of the IBM-2 phase
structure have been presented in Refs. [10–12].

Before proceeding, let us briefly summarize the IBM-2
Hamiltonian and the dynamical symmetries it supports.
Operators in the IBM-2 are constructed from the generators
of the group U��6� � U��6�, realized in terms of the boson
creation operators sy�;0 and dy�;� (where � represents � or �,
and � � �2; . . . ; 2) and their associated annihilation op-
erators, acting on the basis of good boson numbers N� and
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N�. A schematic Hamiltonian which retains the essential
features of the model is the F-spin invariant Hamiltonian
(e.g., Ref. [13])

H � "�n̂d� 	 n̂d�� 	 �Q̂��
� 	 Q̂��

� � � �Q̂��
� 	 Q̂��

� �; (1)

where n̂d� 
 dy� � ~d� and Q̂
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� 
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���d
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�2�. It is convenient to also introduce ‘‘scalar’’
and ‘‘vector’’ parameters �S 
 1

2 ��� 	 ��� and �V 
 1
2 �

��� � ���. Three of the IBM-2 symmetries occur for
�V � 0 and have direct analogs in the one-fluid IBM [8]:
U���5� ( � 0), for which the geometric interpretation is
that of undeformed proton and neutron fluids, SO���6�
(" � 0, �� � �� � 0), yielding a deformed, �-unstable
structure, and SU���3� (" � 0, �� � �� � �

���
7

p
=2), for

which a prolate axially symmetric structure is obtained.
[The complementary case �� � �� � 	

���
7

p
=2, giving an

oblate axially symmetric structure, is distinguished by the
notation SU���3�.] However, a symmetry special to the
IBM-2, denoted SU�

���3�, is obtained for " � 0, �� �

�
���
7

p
=2, and �� � 	

���
7

p
=2 [9]. The equilibrium configu-

ration consists of a proton fluid with axially symmetric
prolate deformation coupled to a neutron fluid with axially
symmetric oblate deformation, with their symmetry axes
orthogonal to each other [9,14,15], yielding an overall
composite nuclear shape with triaxial deformation. To
avoid ambiguity, we adopt here the notation SU�

���3� for
the complementary cases �� � 	

���
7

p
=2 and �� � �

���
7

p
=2,

for which the proton and neutron deformations are
interchanged.

The classical limit of the IBM-2 is obtained by evalu-
ation of the expectation value of H for the coherent
state jN�; �

�2�
� ;N�; �

�2�
� i / �sy�;0 	

P
��

�2�
�;�d

y
�;��N��sy�;0	P

��
�2�
�;�d

y
�;��N� j0i. This yields an energy surface E 


hHi as a function of the coherent state parameters ��2�
�;�.

The ��2�
�;� are interpreted geometrically as the quadrupole

shape variables [16] for the proton and neutron fluids and
are equivalent to four deformation parameters (��, ��, ��,
and ��) and six Euler angles (�1�, �2�, �3�, �1�, �2�, and
�3�). By rotational invariance, E depends only upon the
2-1  2004 The American Physical Society



FIG. 1. Phase diagram for the SU���3�-SO���6�-SU�
���3�

plane (�0 � 1) in the parameter space of the Hamiltonian of
(4), showing the second-order phase transition curves (6) for the
cases N�=N� � 1 (solid lines) and N�=N� � 4 (dashed lines).
The diagram is rotated to allow more direct comparison with
Fig. 2.

PRL 93, 242502 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
10 DECEMBER 2004
relative Euler angles #i between the proton and neutron
fluid intrinsic systems, not the �i� and �i� separately.
Minimization of E���; ��; ��; ��; #1; #2; #3� with respect
to its parameters yields the classical equilibrium configu-
ration of the ground state. The terms hn̂d�i, hn̂d�i, hQ̂� �

Q̂�i, and hQ̂� � Q̂�i contributing to E involve only a single
fluid and are thus known from the IBM (see Ref. [17]). The
expectation value hQ̂� � Q̂�i of the interaction term is
obtained by the methods of Refs. [15,17] as a function of
all seven possible parameters (��, ��, ��, ��, #1, #2, and
#3),

hQ̂��
� � Q̂��

� i �
N�N�

�1	 �2
���1	 �2

��
���2��

� 	 ~��2�
� 	 ����

�2��
�

� ~��2�
� ��2�� � ���2��

� 	 ~��2�
� 	 ����

�2��
�

� ~��2�
� ��2��; (2)

where

��2�
�;� � �� cos��D

2�
�0��1�; �2�; �3��

	
1���
2

p �� sin���D2�
�2��1�; �2�; �3��

	D2�
��2��1�; �2�; �3��� (3)

and where the Euler angles may be chosen to be �i� � 0
and �i� � #i by rotational invariance. The hn̂d�i are linear
in N� or N�, while the hQ̂� � Q̂�0 i are quadratic. It is thus
convenient to reparametrize the Hamiltonian (1) as

H�
1��0

N
�n̂d� 	 n̂d���

�0

N2 �Q̂
��
� 	 Q̂��

� � � �Q̂��
� 	 Q̂��

� �;

(4)

where N 
 N� 	 N�, so that the energy function E is
independent of N at fixed ratio N�=N�. This definition
also condenses the full range of possible ratios "= onto
the finite interval 0 � �0 � 1. An overall normalization
parameter for H has been discarded as irrelevant to the
structure of the energy surface. There are thus three control
parameters—�0, ��, and ��—for this Hamiltonian.

A simple categorization of the possible Euler angle and
�� values for the equilibrium configurations for certain
IBM-2 energy surfaces has been presented in Ref. [15]. For
a class of Hamiltonians including the present one (4), it is
found that the global minimum occurs only for vanishing
relative Euler angles, i.e., for aligned proton and neutron
intrinsic frames. This effectively reduces the number of
order parameters for the system from seven to four—��,
��, ��, and ��.

The orders of phase transitions are, in the present study,
determined according to the Ehrenfest classification: a
phase transition is first order if the first derivative of the
system’s energy is discontinuous with respect to the control
parameter being varied, second order if the second deriva-
tive is discontinuous, etc. Where the system’s energy is
24250
obtained, as in the present classical analysis, as the global
minimum of an energy function E, a first-order transition is
usually associated with a discontinuous jump in the equi-
librium coordinates (‘‘order parameters’’) between distinct
competing minima. Second- or higher-order transitions are
associated instead with a continuous evolution of the equi-
librium coordinates, as when an initially solitary global
minimum becomes unstable (possessing a vanishing sec-
ond derivative with respect to some coordinate) and
evolves into two or more minima. It should be noted that,
whenever the order of a phase transition is obtained by
numerical analysis, application of the Ehrenfest criterion is
limited by the ability to numerically resolve sufficiently
small discontinuities, especially a consideration for points
of first-order transition very close to a point of second-
order transition. Moreover, problems with the classifica-
tion scheme, not addressed here, may arise at the bounda-
ries of the parameter space or when the Hamiltonian
possesses additional symmetries.

We begin our analysis with an analytic study of the
phase structure of the Hamiltonian (4) for �0 � 1, which
encompasses the SO���6�, SU���3�, and SU�

���3� dynami-
cal symmetries (see Fig. 1). The global equilibrium in this
case is always deformed (�� > 0 and �� > 0).
Surrounding the SU���3� dynamical symmetry is a region
of parameter space in which the equilibrium deformations
are axially symmetric (�� � �� � 0�), and a similar
region surrounds the SU���3� dynamical symmetry
2-2



FIG. 2 (color). Phase diagram of the proton-neutron interact-
ing boson model (IBM-2) for the Hamiltonian of (4), as obtained
by numerical minimization of E, for N�=N� � 1. The surfaces of
first-order (red) and second-order (blue) transition between
regions of undeformed, axially symmetric deformed, and triax-
ially deformed equilibria are shown. Only one ‘‘quadrant’’ of
parameter space (0 � �0 � 1, �

���
7

p
=2 � �S � 0, and 0 � �V ����

7
p

=2) is included in this plot, since the others may be obtained
by reflection. The �S and �V axes are scaled by �0, so as to
converge to a point at the U���5� limit.

PRL 93, 242502 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
10 DECEMBER 2004
(�� � �� � 60�). Taking the SU���3�-like region for spe-
cificity, the global minimum occurs for

�� �

�� ��������
14

p

�
2
	 1

�
1=2

�
��������
14

p : (5)

At the boundary of this region, axial equilibrium deforma-
tion gives way to triaxial deformation, with �� and/or ��
nonzero. This transition occurs continuously on the locus
of points at which the minimum given by (5) first becomes
unstable with respect to � deformation. Since E depends
upon both �� and ��, instability occurs when the direc-
tional second derivative of E first vanishes along some
‘‘direction’’ in ���; ��� coordinate space, which may gen-
erally happen before either @2E=@�2

� or @2E=@�2
� vanishes

individually. The equation describing the boundary curve
in �� and �� is most compactly expressed in terms of the
corresponding equilibrium values �� and �� from (5) as

1 �
9 N�

N�
����2

� � 1� 	 ���2�2
� � 1���2

� 	 1�

2����2
� � 2�2

�
9 N�
N�

����
2
� � 1� 	 ���2�

2
� � 1���2

� 	 1�

2����
2
� � 2�2

: (6)

This curve is shown in Fig. 1. Along the SU���3�-SU�
���3�

line (�� � �
���
7

p
=2), for N�=N� � 1 the transition occurs

at �� � 0:4035, at which point the global minimum be-
comes soft with respect to �� at fixed �� � 0�.

Returning to the full parameter space for the three-
parameter Hamiltonian of (4), limited but useful analytic
results can also be obtained for the transition between
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undeformed (�� � �� � 0) and deformed structures.
The parameter space is illustrated in Fig. 2.

For �V � 0, i.e., in the ‘‘base’’ plane in Fig. 2, the
analysis is closely related to that for the one-fluid IBM.
The equilibrium configurations all have �� � ���
 ��
and are identical to those obtained for the IBM
Hamiltonian HIBM � ��1� �0�=N�n̂d � ��0=N2�Q̂� � Q̂�

with � � �S, the phase structure of which is well known
[5,7]. A second-order transition between undeformed (� �
0) and deformed (� � 0) structures occurs at the parameter
values �0 � 1=5 and � � 0, for which the minimum in the
energy surface at � � 0 is unstable. This point lies on a
trajectory of first-order transition points, at which a distinct
minimum with nonzero � preempts that with � � 0 as
global minimum.

A second-order transition from undeformed to deformed
structure occurs when the minimum of E at �� � �� � 0
becomes unstable with respect to � deformation, provided
this minimum is the global minimum (that is, provided it
has not been rendered irrelevant by a prior first-order
transition to another, deformed minimum). The derivative
indicating such � softness is the directional second deriva-
tive @2E=@�2 along a ray �� � u�� and �� � u�� (i.e.,
fixed ��=��) at fixed �� and ��, evaluated at � � 0. This
quantity is independent of �S and �V [e.g., for N�=N��1,
@2E=@�2j��0 � �1� 3�0��u2� 	 u2�� � 4�0u�u� cos��� �

���]. The minimum at zero deformation first becomes
unstable at �0 � 1=5, where it is soft against deformations
with �� � �� and �� � ���
 ��, for any value of �.

The curve of first-order phase transition in the plane
�V � 0 arises from competition between the undeformed
minimum and one with �� � �� � 0 and �� � �� � 0�.
The special ‘‘slice’’ E��� � �;�� � �;�� � 0; �� � 0�
of the energy function, which includes both these minima,
is found for N�=N� � 1 to be independent of �V at fixed �0

and �S, i.e., invariant along any vertical line in Fig. 2. Thus,
the first-order phase transitions occurring in the plane
�V � 0 at �0 < 1=5 ‘‘propagate’’ out of this plane. [To
the approximation that �� � �� for the deformed mini-
mum, the first-order transition surface for �V � 0 is ob-
tained by vertical extension of the one-fluid IBM transition
trajectory in Fig. 2.] The occurrence of a second-order
phase transition at �0 � 1=5 is thus precluded everywhere
except along a vertical line in parameter space extending
through the one-fluid IBM second-order transition point. It
is verified numerically, as described below, that the unde-
formed minimum is indeed global along this line. The line
�0 � 1=5 and �S � 0 is thus a locus of second-order
transition between zero and nonzero deformation. These
results are readily generalized to arbitrary N�=N�, for
which the invariance of E occurs along lines of constant
N��� 	 N��� and the line of second-order phase transi-
tion obeys ��=�� � �N�=N�.

The remainder of the phase diagram is obtained by
numerical minimization of the energy surface with respect
2-3
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to ��, ��, ��, and ��. For robust identification of the
global minimum, E is first evaluated at each point on a fine
mesh in these coordinates (��� � 0:03, ��� � 2�), and
all points which are discrete local minima of E relative to
the neighboring mesh points are identified. The ��, ��,
��, and �� values for these minima are then refined by an
iterative method. The global minimum is identified from
among these.

The phase diagram obtained in this fashion is shown in
Fig. 2 for the case N�=N� � 1. Numerical investigation of
the behavior of E at the transition points allows the
Ehrenfest criterion to be applied, and it appears that the
axial-triaxial transition is everywhere second order.

The IBM-2 phase diagram obtained here provides a
framework for studying the transition between axial and
triaxial structure in nuclei. Triaxial nuclear deformation
might arise from several different sources: higher-order
(cubic, quartic, etc.) interactions in an essentially one-fluid
nucleus [17], distinct deformations of the proton and neu-
tron fluids as discussed here, or the presence of configura-
tions involving hexadecapole nucleon pairs [18]. The
present analysis provides insight into the conditions under
which proton-neutron triaxial deformation may occur
and the nature of the transition to such structure.
Phenomenological studies extending this work should
make use of a more realistic Hamiltonian involving a
Majorana contribution and different strengths for the Q̂� �

Q̂�0 terms (e.g., Ref. [13]). Such studies will provide
guidance for the experimental investigation of triaxial
structure as progressively more neutron rich nuclei become
accessible.

The present analysis may serve as a model for the study
of other multifluid bosonic systems. Within nuclear phys-
ics, the Ucore�6� � Uskin�6� description of core-skin collec-
tive modes in neutron rich nuclei [19] can be treated
similarly. In molecular physics, a study of the phase struc-
ture is in progress for the vibron model with two vibronic
species [2], where it is relevant to coupled vibronic bend-
ing modes in acetylene. Another area of potential applica-
tion of the method is to atomic Bose-Einstein condensates.
Scissors modes, introduced originally within the frame-
work of nuclear two-rotor models [20] and the IBM-2 [21],
have been observed for oscillations of a single-constituent
Bose-Einstein condensate relative to an anisotropic poten-
tial [22]. Experiments are planned to produce condensates
of two different atomic species and to study the scissors
modes between them. Triaxial deformations of the type
considered here could then occur, and a directly analogous
analysis could be applied.

The exotic features of the phase diagram considered
here, arising from the presence of multiple control parame-
ters and multiple order parameters, are likely to be encoun-
24250
tered for other multifluid systems as well. They will require
a classification scheme beyond the simple Ehrenfest or
one-parameter Landau models for their proper description.

Discussions with J. M. Arias and R. Bijker are gratefully
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under Grant No. DE-FG02-91ER-40608.
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