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Using effective field theory we derive inequalities for light nuclei in the Wigner symmetry limit. This
is the limit where isospin and spin degrees of freedom can be interchanged. We prove that the energy of
any three-nucleon state is bounded below by the average energy of the lowest two-nucleon and four-
nucleon states. We show how this is modified by lowest-order terms breaking Wigner symmetry and
prove general energy convexity results for SU�N�. We also discuss the inclusion of Wigner-symmetric
three- and four-nucleon force terms.
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Weinberg was the first to apply effective field theory to
the nucleon-nucleon interaction [1]. Since then, effective
field theory methods for nuclear physics have been fur-
ther developed and applied successfully to the two- and
three-nucleon system [2]. Recently, though, there has also
been progress in applying effective field theory to many-
body nuclear physics using lattice methods [3] as well as
other methods such as density functional theory [4].

The traditional approach to many-body nuclear physics
is based on two- and three-body potential models.
Although this approach has been very successful in de-
scribing the ground-state properties of light nuclei and
neutron drops, the effective field theory approach offers
several important advantages. First of all, effective field
theory provides a direct connection with quantum chro-
modynamics (QCD). It explains the form of the interac-
tions and how the strength of the interaction changes with
the cutoff scale. Also, the calculations can be systemati-
cally improved and one can estimate the errors due to
contributions that have been neglected. Furthermore, it
has been discovered that the effective Lagrangian is often
amenable to analysis so that nonperturbative results can
be proven without even any numerical simulations.
Effective field theory was used in [5] to prove inequalities
for the correlations of two-nucleon operators in symmet-
ric nuclear matter. In [6] upper bounds were proven for
pressure in isospin-asymmetric nuclear matter and neu-
tron matter in a magnetic field.

The idea of proving rigorous inequalities from
Euclidean functional integrals is not new. In fact, the
connection between effective field theory inequalities
and nuclear lattice simulations is much the same as the
connection between QCD inequalities [7] and lattice
QCD. In this Letter we first confirm the results of [8,9]
by showing that the physics of low-energy symmetric
nuclear matter is close to the Wigner limit, where the
isospin and spin degrees of freedom can be interchanged.
In this limit SU�2� � SU�2� spin-isospin symmetry is
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elevated to an SU�4� symmetry. We prove that the energy
of any three-nucleon state is bounded below by the aver-
age energy of the lowest two-nucleon and lowest four-
nucleon states. We show how this is modified by lowest-
order terms breaking Wigner symmetry and prove general
energy convexity results for SU�N�. We also discuss the
inclusion of Wigner-symmetric three- and four-nucleon
force terms. Much of the physics we describe is universal
and appears in other systems such as trapped Fermi gases
near a Feshbach resonance [10]. Our general result for
SU�N� will be interesting if and when one is able to trap
four or more degenerate fermionic states.

Let N represent the nucleon fields. We use ~� to represent
Pauli matrices acting in isospin space and ~� to represent
Pauli matrices acting in spin space. We assume exact
isospin symmetry. In the nonrelativistic limit and below
the threshold for pion production, we can write the
lowest-order terms in the effective Lagrangian as

L � �N
�
i@0 �

~r2

2mN
� �m0N ���

�
N �

1

2
CS �NN �NN

�
1

2
Codd� �N ~�N 	 �N ~�N � �N ~�N 	 �N ~�N
: (1)

We have neglected three-nucleon terms for now but will
consider them later. We have written the Lagrangian so
that the operator multiplying Codd flips sign under the
exchange of isospin and spin degrees of freedom.

We now determine CS and Codd on a spatial lattice for
various lattice spacings alattice by matching with experi-
mental values for the nucleon-nucleon scattering lengths.
We sum all nucleon-nucleon scattering bubble diagrams
on the lattice, locate the pole in the scattering amplitude,
and compare with Lüscher’s formula relating scattering
lengths and energy levels in a finite periodic box [11,12].
In Table I we have tabulated these coefficients. As noted
in [13], deeply bound Efimov states will begin to appear if
we make a�1lattice too large. In reality this is not much of a
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TABLE I. Contact potential coefficients.

a�1lattice�MeV� CS�MeV
�2� Codd�MeV

�2�

20 �3:40� 10�4 �3:8� 10�5

40 �1:20� 10�4 �6:0� 10�6

60 �7:70� 10�5 �2:4� 10�6

80 �5:60� 10�5 �1:3� 10�6

100 �4:40� 10�5 �8:0� 10�6
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restriction since we should not let a�1lattice exceed the chiral
symmetry breaking scale (or even m� for the pionless
theory).

We see that Codd is much smaller in magnitude than CS.
In the limit Codd ! 0, the SU�2� � SU�2� spin-isospin
symmetry is elevated to an SU�4� symmetry. This sym-
metry was first studied by Wigner [14], and arises natu-
rally in the limit of large number of colors, Nc [15,16].
Although the 1S0 and 3S1 scattering lengths are quite
different, the fact that both scattering lengths are large
suggests we are close to the Wigner limit [8,9].

When Codd � 0 the grand canonical partition function
is given by

ZG �
Z
DND �N exp��SE� �

Z
DND �N exp

�Z
d4xLE

�
;

(2)

where

L E�� �N

"
@4�

~r2

2mN
��m0N���

#
N�

1

2
CS �NN �NN: (3)

Using Hubbard-Stratonovich transformations, we can re-
write ZG as

ZG /
Z
DND �NDf exp

�Z
d4xLf

E

�
; (4)

where

L f
E�� �N

"
@4�

~r2

2mN
��m0N���

#
N�CSf �NN�

1

2
CSf

2:

(5)

Since CS < 0, the f integration is convergent.
LetM be the nucleon matrix.M has the block diagonal

form,

M � Mblock Mblock Mblock Mblock; (6)

where we have one block for each of the four nucleon
states and

Mblock � �

�
@4 �

~r2

2mN
� �m0N ���

�
� CSf: (7)

We note that M is real valued and therefore detM � 0.
Consider the two-nucleon operator A2�x� �

�N
i�N
j�x�, where i � j are indices for two different nu-
cleon states. The two-point correlation function for A2 is
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hA2�x�A
y
2 �0�i�;T � h�N
i�N
j�x��N

�
j�N
�
i�0�i�;T: (8)

Using our Euclidean functional integral representation,
we have

hA2�x�A
y
2 �0�i�;T �

Z
D��M�1

block�x; 0�

2 (9)

where D� is the positive normalized measure defined by

D� �
Df detM exp�12CS

R
d4xf2�R

Df detM exp�12CS
R
d4xf2�:

(10)

We note that sinceMblock is real valued,M�1
block is also real

valued.
Next we consider the three-nucleon and four-nucleon

operators A3�x� � �N
i�N
j�N
k�x� and A4�x� �
�N
i�N
j�N
k�N
l�x�, where i; j; k; l are all distinct. We
have

hA3;4�x�A
y
3;4�0�i�;T �

Z
D��M�1

block�x; 0�

3;4: (11)

We note thatZ
D�jM�1

block�x; 0�j
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where the second line is from the Cauchy-Schwarz in-
equality. Therefore

jhA3�x�A
y
3 �0�i�;T j �

																																																																	
hA2�x�A

y
2 �0�i�;ThA4�x�A

y
4 �0�i�;T

q
:

(13)

Let EA2 be the binding energy of the lowest state that
couples to A2, and EA4 be the binding energy of the lowest
state that couples to A4. From stability arguments we
know that

EA2 � EA3 � EA4 ; 2EA2 � EA4 ; (14)

since otherwise the three-nucleon and four-nucleon states
could decay into nucleons or smaller nuclei. But now we
can use (13) to prove a different inequality. Taking the
limit x! 1 in the temporal direction we see that any
state with the quantum numbers of A3 must have energy
less than the average of EA2 and EA4 ,

EA3 �
1

2
�EA2 � EA4
: (15)

Taking the limit x! 1 in any spatial direction we have
that the inverse correlation length for A3 must be greater
than the average of the inverse correlation lengths for A2
and A4,
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TABLE II. Binding energies for light nuclides.

1S0 �0 MeV (nearly bound)

D �2:224 MeV
3He �7:718 MeV
T �8:481 MeV
4He 28:296 MeV
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��1A3 �
1

2
���1A2 � ��1A4 
: (16)

Using arguments similar to those in [5], we can show that
the inequalities (15) and (16) hold for a general three-
nucleon operator

A3�x� �
Z
�
d4x1d

4x2aijk�x1; x2��N
i�x� x1�

� �N
j�x� x2��N
k�x� x3�; (17)

so long as � is bounded.
In the real world Codd is small but nonzero. We can

measure the shift in the energy of a given state jAi using
first-order perturbation theory, �EA � hAjH0jAi, where

H0 �
1

2
Codd

Z
d3 ~x� �N ~�N 	 �N ~�N � �N ~�N 	 �N ~�N
:

(18)

Let us first consider two-nucleon states in an Swave. In
terms of SU�4� representations, we decompose the tensor
product of two fundamental four-dimensional represen-
tations, 4 � 4 � 10  6. The six-dimensional representa-
tion is antisymmetric, and the spin and isospin repre-
sentations must be 6 � �1; 0�  �0; 1�. The spin triplet
with isospin singlet corresponds with the deuteron, D,
while the spin singlet with isospin triplet corresponds
with the nearly bound 1S0 states. A similar analysis for
S-wave three-nucleon states gives us one antisymmetric �4
representation with spin-isospin content �4 � �12 ;

1
2�. This

multiplet corresponds with the triton, T, and Helium-3.
There is only one antisymmetric S-wave four-nucleon
state. It is a therefore spin singlet and isospin singlet
and corresponds with Helium-4.

Under a transformation that interchanges spin and iso-
spin degrees of freedom, j4Hei is mapped into itself,
possibly with a minus sign. However, H0 is odd under
this transformation and therefore, h4HejH0j4Hei � 0.
Under the interchange of spin and isospin, the spin-up
3He state and spin-down T state are also mapped into
themselves, possibly with minus signs. We conclude that
h3HejH0j3Hei � hTjH0jTi � 0. Under the interchange of
spin and isospin, the D states and 1S0 states interchange
with each other, again possibly with minus signs.
Therefore, hDjH0jDi � �h1S0jH0j1S0i.We can now adjust
for the first-order energy corrections due to H0,

E3He; ET �
1

2

�
1

2
�ED � E1S0� � E4He

�
: (19)

The physical binding energies are shown in Table II [17].
Plugging these values into (19), we find that the inequal-
ity is satisfied, �7:7 MeV, �8:5 MeV � �14:7 MeV.
An analogous relation can be derived for the inverse
correlation lengths,

��13He; �
�1
T �

1

2

�
1

2
���1D � ��11S0� � �

�1
4He

�
: (20)
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We stress that all of these inequalities hold in symmetric
nuclear matter at any density or temperature where the
effective theory description is valid. From here on we will
consider only energy inequalities since the inverse corre-
lation length inequalities are completely analogous.

We now generalize the results (15) and (16) to the case
where the Wigner symmetry is a SU�N� symmetry, for
arbitrary N. Let nsmall; nbig, and n be any integers such
that 0 � 2nsmall < n< 2nbig � N. Then

En �
n� 2nsmall
2nbig � 2nsmall

E2nbig �
2nbig � n

2nbig � 2nsmall
E2nsmall :

(21)

This inequality is a statement of convexity of the energy
as a function of nucleon number, with the additional
requirements that the number of nucleons is less than or
equal to N and the two end points have an even number of
nucleons. The proof of the inequality is straightforward.
We can writeZ
D�jM�1

block�x;0�j
n�

Z
D�jM�1

block�x;0�j
zjM�1

block�x;0�j
n�z:

(22)

Applying the Hölder inequality to the right-hand side,
one finds the upper bound (21).

Taking N � 4 and setting 2nsmall � 2, n � 3, 2nbig �
4; we recover (15). If, however, we let 2nsmall � 0, n � 3,
2nbig � 4, we get E3 �

3
4E4. There are no first-order H0

corrections in this case, and we see that in the real world,
this inequality is satisfied �7:7 MeV, �8:5 MeV �
�21:2 MeV. Setting 2nsmall � 0, n � 2, 2nbig � 4, we
get E2 �

1
2E4. With first-order H0 corrections we have

1

2
�ED � E1S0� �

1

2
E4He; (23)

and this is also satisfied, �1:1 MeV � �14:1 MeV. We
note, however, that this was already known from the
stability condition (14).

Up to this point we have ignored three- and four-
nucleon forces. It has been shown that the dominant
three-nucleon force is Wigner-symmetric [8,13]. We now
show that introducing Wigner-symmetric three- and four-
nucleon forces does not spoil positivity of the Euclidean
functional integral so long as the three-nucleon force is
not too strong and the four-nucleon force is not too
repulsive. We want to find a Hubbard-Stratonovich trans-
2-3
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formation that reproduces a contribution to the action of
the form,Y

x

exp�c2� �NN�x��2 � c3� �NN�x��3 � c4� �NN�x��4
: (24)

Let us just concentrate on what happens at a single point
x, and in our notation, we suppress writing the x explic-
itly. We note that �NN raised to any power greater than
four must vanish. So we have

exp�c2� �NN�
2 � c3� �NN�

3 � c4� �NN�
4


� a0 � a1 �NN �
a2
2!

� �NN�2 �
a3
3!

� �NN�3 �
a4
4!

� �NN�4;

(25)

a0 � 1; a1 � 0; a2 � 2c2;

a3 � 6c3; a4 � 12c22 � 24c4:
(26)

We now to try find a real function g�f� such thatZ 1

�1
df exp�f �NN � g�f�
 � a0 � a1 �NN �

a2
2!

� �NN�2

�
a3
3!

� �NN�3 �
a4
4!

� �NN�4:

(27)

We observe that a Hubbard-Stratonovich transformation
of this form maintains the positive functional integral
measure. Expanding the left-hand side, we have

an �
Z 1

�1
dffn exp�g�f�
; n � 0; 1; 2; 3; 4: (28)

Finding sufficient and necessary conditions for the exis-
tence of g�f� is known in the mathematics literature as the
truncated Hamburger moment problem. This problem has
been solved [18], and in our case g�f� exists if and only if
the so-called block-Hankel matrix,

a0 a1 a2
a1 a2 a3
a2 a3 a4

264
375 �

1 0 2c2
0 2c2 6c3
2c2 6c3 12c22 � 24c4

264
375; (29)

is positive semidefinite, with the added condition that if
c2 � 0 then c4 � 0. The determinant of this matrix is
16c32 � 36c

2
3 � 48c2c4. With an attractive two-nucleon

force and small three- and four-nucleon forces, the con-
ditions are clearly satisfied. Whether or not these condi-
tions are satisfied in the real world and at which lattice
spacings is beyond the scope of this Letter. But hopefully
this will be numerically determined in the near future.

To summarize, the physics of low-energy symmetric
nuclear matter is close to theWigner limit.We have proven
that the energy of any three-nucleon state is bounded
below by the average energy of the lowest two-nucleon
and four-nucleon states. We have calculated the correc-
tions due to the lowest-order terms breaking Wigner
symmetry and shown that the inequalities are satisfied.
242302
We have proven general energy convexity results for
SU�N� and shown that all of these inequalities are sat-
isfied for N � 4. We have also discussed the inclusion of
Wigner-symmetric three- and four-nucleon forces.
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