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Excitations of a Superfluid in a Three-Dimensional Optical Lattice
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We prepare a Bose-Einstein condensed gas in a three-dimensional optical lattice and study the
excitation spectrum of the superfluid phase for different interaction strengths. We probe the response of
the system by modulating the depth of the optical lattice along one axis. The interactions can be
controlled independently by varying the tunnel coupling along the other two lattice axes. In the weakly
interacting regime we observe a small susceptibility of the superfluid to excitations, while for stronger
interactions an unexpected resonance appears in the excitation spectrum. In addition we measure the
coherent fraction of the atomic gas, which determines the depletion of the condensate.
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FIG. 1. An illustration of the experimental sequence used to
measure the excitation spectrum of the Bose gas in the optical
lattice is shown on the left. The optical lattice geometry is
depicted on the right. The excitation spectra are recorded as a
function of the transferred energy h�mod and repeated for
different values of the transverse lattice depth V?; see text.
A variety of intriguing macroscopic quantum phe-
nomena have become accessible to experiments with
quantum gases by loading them into the periodic poten-
tial of an optical lattice. Initial experiments were carried
out in the weakly interacting regime which led to the
observation of Josephson-type oscillations [1,2], analo-
gous to those seen in superconductors or superfluids. The
strongly interacting regime could be reached in experi-
ments with extremely deep lattice potentials leading to
number squeezing [3,4], and with three-dimensional op-
tical lattices leading to the observation of a quantum
phase transition from a superfluid to a Mott insulator
[5,6]. In the latter experiments the repulsive interaction
energy U between two atoms within a minimum of the
optical lattice potential is much larger than the kinetic
energy associated with the tunnel coupling J between
adjacent minima [7–10].

In this Letter we explore the excitation spectrum of a
Bose-Einstein condensed gas in a three-dimensional op-
tical lattice where we can continuously tune the experi-
mental regime from weak (U � J) to increasingly
stronger (U � J) interactions. Modulation of the depth
of the optical lattice along one axis is used to excite the
system while the effect of interactions is controlled by
increasing the potential depth along the other two axes.

The strength of the excitation is measured by the
fraction of atoms which are exited out of the condensate.
The weakly interacting Bose gas shows a very low sus-
ceptibility to the modulation. This observation is in agree-
ment with a theoretical prediction derived with stationary
Bogoliubov theory [11]. When we continuously increase
U=J we observe a gradual appearance of an unexpected
resonance in the excitation spectrum. For each value of
U=J we measure the coherent fraction of the atomic gas
to determine the depletion of the condensate.

Our experimental setup is described in Ref. [12]. In
brief, we produce almost pure condensates of typically
1:5� 105 87Rb atoms in the hyperfine groundstate jF �
2; mF � 2i which is confined by a magnetic trap with
trapping frequencies !x�2
�18Hz, !y�2
�20Hz,
04=93(24)=240402(4)$22.50 24040
and !z � 2
� 22 Hz. Three retro-reflected laser beams
(wavelength  � 826 nm) are focused onto the conden-
sate to form the optical lattice. At the position of the
condensate the Gaussian shaped beams have 1=e2-radii of
120 �m (x and y axes) and 105 �m (z). The Thomas-
Fermi radius of the magnetically trapped condensate is
RTF � 13 �m and the number of occupied sites along the
probe axis can be estimated to be L � 4RTF= ’ 60. For
the maximal depth of the optical lattice potential the
confinement of the atomic cloud is dominated by the
Gaussian intensity profile of the lattice beams which
leads to a nearly isotropic harmonic potential with a
trapping frequency of 2
� 47 Hz.

To load the condensate into the ground state of the
optical lattice, the intensities of the lasers are slowly
increased to their final values using an exponential
ramp with a time constant of 25 ms and a duration of
100 ms. The resulting optical potential depths Vy � Vax

and Vx;z � V? are proportional to the laser intensities and
are conveniently expressed in terms of the recoil energy
ER � �h2k2

2m with k � 2

 and the atomic mass m. The spe-

cific loading sequence is shown in Fig. 1. The axial
potential is ramped to Vax � 8ER and simultaneously
2-1  2004 The American Physical Society
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FIG. 2 (color online). Absorption images of the Bose gas
taken after 25 ms of ballistic expansion. Prior to the expansion
the optical lattice depth along the probe axis is modulated for a
period of 30 ms at the frequency �mod � 3 kHz . The data for
the weakly interacting regime are displayed on the left and the
data for stronger interactions are shown on the right. The total
field of view of the images is 720� 720 �m, solid box. The
optical density of the central momentum peak is fitted with a
bimodal distribution from which the strength of excitation is
obtained, see text. The fit (solid line) and the column sum of
the optical density (circles) are shown in the upper row. The
dashed line is the Gaussian part of the bimodal fit. The ratios
U=J are calculated numerically [10].
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the potential along the orthogonal axes is ramped to
different values in the interval V? � 0–8ER. The ratio
U=J is set by the final value of V?. Here J is the combined
tunnel coupling between a single site and all nearest
neighbor sites, i.e. J � 2Jx 
 2Jy 
 2Jz where Jl is the
tunnel coupling between two adjacent sites along the axis
l.

After loading the condensate into the optical lattice we
modulate the amplitude of the standing wave along the
probe axis at a frequency �mod (see Fig. 1). This modula-
tion adds two sidebands at frequency ��mod to the carrier
frequency of the standing wave field. Accordingly, two-
photon Raman transitions can be induced which transfer
energy h�mod, in analogy with Bragg spectroscopy on
magnetically trapped condensates [13]. For an extended
periodic system the quasimomentum transfer q of the
modulation would be zero. Because of the finite size of
the sample the transferred quasimomentum lies in the
interval �q � �2 �hk=L around zero.

Following the excitation we ramp down the lattice
potentials linearly in 15 ms to Vax � V? � 4ER. The
system is kept at this lattice depth for 5 ms to allow for
rethermalization [14]. Then all optical and magnetic po-
tentials are suddenly switched off. The resulting matter
wave interference pattern is detected by absorption imag-
ing after 25 ms of ballistic expansion. The duration
tmod � 30 ms and amplitude Amod � 0:2Vax of the modu-
lation are chosen such that we always observe a finite
condensate fraction. We have also verified that all atoms
remain in the lowest Bloch band by adiabatically switch-
ing off the lattice potentials [15] after the modulation.

In Fig. 2 we show absorption images taken after mod-
ulating the optical lattice amplitude at a frequency
�mod � 3 kHz. During the modulation energy is trans-
ferred to the atomic gas which results in a broadening
of the central momentum peak. We analyze the central
momentum peak using a two-dimensional bimodal dis-
tribution consisting of a Gaussian function for the ther-
mal fraction and an inverted parabolic function for the
condensate component. We use the thermal fraction 1�
Nc=N obtained from the image analysis as a measure for
the excitation strength, with Nc and N being the conden-
sate and total number of atoms in the central momentum
peak. For the thermal fraction we find a minimum of
around 0.2 even when we reduce the amplitude of the
modulation to zero. When we adiabatically increase and
subsequently reduce the lattice potential we do not ob-
serve any significant heating of the condensate. However,
during expansion from the optical lattice atom-atom
scattering may reduce the condensate fraction. Also,
when the condensate fraction is high the optical density
of the central momentum peak saturates and we under-
estimate the number of atoms in the condensate. Finally,
when the thermal fraction is small the atomic distribution
is no longer accurately fitted by the bimodal distribution.
24040
Figure 2 shows that the thermal fraction remains close
to its minimum when the modulation is performed in the
weakly interacting regime (V? � 1ER), i.e., the system is
not susceptible to the excitation. In the more strongly
interacting regime (V? � 7ER) the thermal fraction ap-
proaches unity. Here the superfluid shows an increased
susceptibility to the modulation. We have measured a full
series of spectra to characterize the Bose gas in the
transition region between weak and increasingly stronger
interactions. Each spectrum is recorded by scanning the
frequency �mod of the modulation for a fixed value of V?.
These data are displayed in Fig. 3 where the excitation
strength is plotted as a function of the transverse lattice
potential V? and the frequency �mod.

We first discuss our results for the weakly interacting
Bose gas (V? � 0ER, and U=J � 1). In this regime the
observed excitation strength remains close to the lower
detection limit of 0.2 for all excitation energies. This
observation can be related to the behavior of the static
structure factor Sq� derived from stationary Bogoliubov
theory. The structure factor describes the total strength of
all possible excitations with momentum transfer q. For q
close to zero the excitation energy to the second
Bogoliubov band is above 4ER where ER=h � 3:4 kHz.
2-2
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FIG. 3 (color online). Excitation strength of the Bose gas as a
function of the transverse lattice depth V? and the excitation
frequency �mod. The interaction ratios U=J are given in brack-
ets. The surface and contour plot is generated from a Renka-
Cline interpolation of approximately 160 data points (�). Data
points from Fig. 2 are also shown as projections onto the
contour plane. The maximal observed scattering among re-
peated measurements of the excitation strength is �0:02.
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Since the highest modulation frequency is 6 kHz we can
safely neglect excitations beyond the lowest band. For
long wavelength excitations (q close to zero) the structure
factor behaves like Sq� � "q�= �h!q�, where "q� and
!q� are the lowest Bloch and Bogoliubov bands in the
optical lattice [11]. Because of the quadratic (linear)
dispersion relation of the Bloch (Bogoliubov) band near
zero quasimomenta we expect a strong suppression of the
measured excitation strength for all excitation energies
which is in reasonable agreement with our experimental
observation.

The excitation strength in Fig. 3 shows the gradual
appearance of a resonant feature when we approach the
more strongly interacting superfluid phase (V? � 8ER,
and U � J). The position of this resonance is well above
the frequencies expected for collective oscillations of the
superfluid. We can also rule out excitations to the second
Bogoliubov band since these appear at a much higher
frequency.

For a translationally invariant system the appearance
of the resonance would be unexpected for the following
reasons. First, the single-phonon excitation energy is lim-
ited by the width of the first Bogoliubov band. For our
parameters this width is !qB� � 0:23ER=h � 0:77 kHz,
where qB is the Bragg momentum of the periodic lattice
[16]. This is significantly below the observed resonance
close to 1ER=h � 3:4 kHz. Second, the suppression of the
structure factor discussed above for the weakly interact-
ing Bose gas is based on the f-sum rule [17] which is also
valid for strongly interacting many-body systems. In liq-
uid helium, for example, inelastic scattering of x rays and
24040
slow neutrons has shown that long wavelength excitations
are suppressed at low temperature [18,19]. However, high
energy excitations at low momenta corresponding to
multiphonon states have been observed in liquid helium
[20]. Recently it was also suggested that the quantum
depletion of an atomic gas at zero temperature adds a
correction to the dynamic structure factor at low mo-
menta and nonvanishing excitation energies [21]. This
result was derived for a three-dimensional system by
going beyond the lowest order Bogoliubov expansion. It
thus points out the important role played by the quantum
depletion which can lead to the excitation of two quasi-
particles with opposite momenta at a finite excitation
energy.

Recently the parametric excitation of Bogoliubov
modes was studied by solving the time-dependent
Gross-Pitaevskii equation for an elongated Bose-
Einstein condensate in an optical lattice [22]. In this
simulation the modulation at frequency �mod drives the
parametric amplification of excitations with momenta
�q which satisfy the resonance condition �mod �
2!q�. Soon after these two modes have been amplified,
their mean-field interaction with each other and with the
ground state leads to the population of new modes and a
rapid broadening of the momentum distribution. When
�mod > 2!qB� the resonance condition can no longer be
satisfied and the excitation strength decreases. The time
scale for the onset of the parametric process decreases
with larger population of the Bogoliubov modes.
Therefore the excitation efficiency should increase with
increasing depletion of the condensate, i.e., for larger
U=J.

In order to investigate the role played by the depletion
of the condensate we have measured the coherence prop-
erties of the atomic sample both in the weakly and the
more strongly interacting superfluid phase where the reso-
nance appears. We image the matter wave interference
pattern to extract the coherent fraction [3,5,6]. First we
prepare the Bose gas in the lattice as described above but
do not apply our excitation scheme. Instead, after holding
the atoms at the final lattice depth for th � 10 ms, we
increase all lattice axes rapidly ( < 40 �s) to about 25ER
and then abruptly switch off all optical and magnetic
trapping potentials. This procedure always projects the
state of the superfluid on the same set of Bloch levels. To
extract the number of coherent atoms Ncoh from the in-
terference pattern, the peaks at 0 �hk, �2 �hk, and �4 �hk are
fitted by Gaussians (see inset in Fig. 4). Incoherent atoms
give rise to a broad Gaussian background. Taking this fit
as a measure of the number of incoherent atoms Nincoh, we
calculate the coherent fraction fc �

Ncoh

Ncoh
Nincoh
. In Fig. 4

the coherent fraction is shown for increasing values of
V?. The very slow decrease of fc shows that the system
remains coherent and we do not observe a significant
increase in the condensate depletion when preparing the
2-3
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FIG. 4 (color online). Coherent fraction as a function V?. The
inset shows the absorption image after 10 ms expansion of a
condensate initially prepared in the optical lattice with V? �
3ER (dimensions 570� 380 �m). The coherent fraction is
deduced from a Gaussian fit (solid plus dashed line) to the
column sum of the optical density (circles); see text. The finite
coherent fraction of 65% can be attributed to the quantum
depletion in the optical lattice, the finite temperature of the
system and atom-atom scattering during the expansion from
the optical lattice. Error bars are determined by the statistical
error of four measurements.
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superfluid in the more strongly interacting regime where
U � J. Using a Gutzwiller variational calculation we find
that, as a result of the quantum depletion, the condensate
fraction is reduced to 0.72 for the maximal depth of the
optical lattice [23].

In conclusion, we have used an optical lattice com-
posed of three orthogonal standing waves to adjust the
level of interactions in a Bose-Einstein condensed gas
and we have investigated the response of this system to
the modulation of the optical lattice amplitude along one
axis. In the weakly interacting regime (U � J) the ob-
served excitation strength remains close to zero while in
the more strongly interacting regime (U � J) a broad
resonance appears at excitation energies above the width
of the first Bogoliubov band in the optical lattice. Finally
we have measured the depletion of the condensate which
remains almost constant for the same parameters where
the resonance appears.
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