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Reproducible Sequence Generation In Random Neural Ensembles
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Little is known about the conditions that neural circuits have to satisfy to generate reproducible
sequences. Evidently, the genetic code cannot control all the details of the complex circuits in the brain.
In this Letter, we give the conditions on the connectivity degree that lead to reproducible and robust
sequences in a neural population of randomly coupled excitatory and inhibitory neurons. In contrast to
the traditional theoretical view we show that the sequences do not need to be learned. In the framework
proposed here just the averaged characteristics of the random circuits have to be under genetic control.
We found that rhythmic sequences can be generated if random networks are in the vicinity of an
excitatory-inhibitory synaptic balance. Reproducible transient sequences, on the other hand, are found

far from a synaptic balance.
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Introduction.—At the behavioral level, to be successful
an animal not only has to learn a specific task, it also
needs to learn specific sequences or orders of tasks. At the
neural level, reproducible sequential neural activity has
been shown to be crucial in a variety of cases, such as
processing of sensory information [1], animal communi-
cation [2], and motor control and coordination [3]. All
these intriguing experimental observations pose the prob-
lem about how to generate reproducible and robust se-
quences of neural activity. Our working hypothesis is that
neural systems that generate sequences carry out just this
task: To create stimulus dependent reproducible sequen-
ces (RS) that are robust against perturbations. As shown
in [4], a learning phase for a specific computational task
can be efficiently carried out at later stages. Our main
goal is to determine the design conditions for the neural
system generating sequential activity that leads to robust
RS. We here want to investigate how these RS can emerge
spontaneously without any learning rule or external guid-
ance. The basic network in our investigation is a Bernoulli
random graph. This is the simplest network of excitatory
and inhibitory neural clusters because it only requires a
few control parameters: probabilities of making a con-
nection from one cluster type to another. Thus, nature just
needs to encode the probability of connections in the
genetic code to realize such a network. If we can find
parameter values for which it is very likely to find RS,
then we can argue that random networks are a suitable
substrate for RS generation in the nervous system.

In this Letter, we determine that the area of the highest
likelihood to find limit cycles is slightly shifted with
respect to the one that provides balanced excitatory-
inhibitory synaptic input to each cluster of neurons. On
the other hand, regarding transient behavior, RS are found
far from the region of balanced excitatory-inhibitory
synaptic input. This dichotomy poses the fundamental
question about what alternative sensory systems may
choose. A strong argument is that sensory systems react
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as fast as possible to exogenous perturbations or stimuli.
It is, therefore, very likely that neural systems responsible
for sequence generation use transient dynamics and, thus,
they are not located near the region of balanced
excitatory-inhibitory synaptic connectivity.

Model—We analyze a Wilson-Cowan type network of
excitatory and inhibitory clusters of neurons [5], whose
simplified ordinary differential equations (ODE) are
given by

1 dx,- il EE & EI E
B = @(Zw,-j Xj— Zwijy]‘ +Si>_xi’ (1)
j=1 Jj=1

1 dy; & IE S 11 1
= =

where x; and y; represent the fraction of active neurons in
cluster i of the excitatory and inhibitory population,
respectively, and the numbers of excitatory and inhibitory
clusters are N and N;. Throughout this Letter E is used
to denote a quantity of the excitatory population and [ to
denote those of the inhibitory population. The external
inputs Sg ; are instantaneous “‘kicks” at time zero applied
to a fraction of the total population. The gain function is
0(z) = j[tanh((z — b)/o) + 1], with a threshold b = 0.1
below the excitatory and inhibitory synaptic strength of a
single connection. We will assume that the clusters have
very sharp excitability, such that in all the simulations we
set 0 = 0.01. Nevertheless, there is a wide range of o
values that generates similar results. The simulations
deviate from the theoretical estimations for o = 0.5.
The time scale is set as in [5], 87! = 10 ms. The con-
nectivity matrices, wfi.y , have entries drawn from the
following Bernoulli process

Xy —

Wi]

Y{ 1 with probability pyy, 3)

0 otherwise.
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FIG. 1. Phase portrait of RS of three clusters using pgg =
005 pE1_03 pIE_O'l’pII 2015, and gE :2, gl =02

where X,Y = E,I. An example of RS by the Wilson-
Cowan model is shown in Fig. 1.

Methods.—To detect limit cycles we used a simple
algorithm that stores the order in which neuron clusters
pass a certain threshold value in an array. We fixed this
threshold exactly at the average value of the total activity.
In the list of active clusters we detect repetitions of
sequences of active clusters. This method for limit cycle
detection is fast to compute but it can underestimate the
number of limit cycles because there can be oscillations
at higher or lower levels than the chosen threshold.

To detect the degree of reproducibility during transient
dynamics we build a graph where each node represents a
cluster label i and each edge is the probability to go from
one cluster to the next, p;_;. This graph with its transition
probabilities is built using the statistics gathered from
runs with 50 different initial conditions. We then calculate
the entropy of the outdegree edges belonging to each
node, S; = —> ;p;—;logp;.;. If the sequence of activity
is highly reproducible then S; = 0. If the transition from
one cluster to the next is uniformly random then §; =
logNg. We build the graph only with the excitatory popu-
lation because it is the driving force in our model. As a
measure of reproducibility we then use S = (1/Ng)3 ;S,.

Probability map.—In parallel to the numerical work we
build statistical estimators that predict the activity of the
excitatory and inhibitory populations. This activity esti-
mation allows us to determine the region where we can
expect a maximal probability of crossing the threshold,
where balanced excitation and inhibition exists [6], and
where to expect better chances of having reproducible
sequences. To build our estimators we make the assump-
tion of homogeneity and statistical independence between
the state of the system and the network connectivity. This
second assumption is widely used to build estimators of
measures over random network dynamics [7,8].

To avoid solving a partial differential equation for the
probability distributions, we assume that the states of the

clusters are either one or zero; that gives us good approx-
imations for o = 0.5. Then, we assign a constant tran-
sition probability u to jump from one state to the other at
each time step. When starting with 1 (0), the probability
to still be 1 (0) after n iterations is proportional to
exp(—un). On the other hand, if we integrate the ODEs
for a single cluster its value either decays or grows as
exp(—Bt). Therefore, we match the stochastic to the
deterministic process by setting un = St.

Let us define x and y as the homogeneous variables
representing the state of the excitatory and inhibitory
population. We want to calculate the probability of
the state x(¢), y(¢) at time ¢ given the state at time ¢ — 1.
In order to do so we define the following events: the
event Ay and Ay when the clusters receive a level
of depolarization higher than or equal to the threshold,
ie., ﬂX—ZJ lw Ex; —ZJ 1w !y;=b and Ay =
Z] WX — Z] | wiy; =b. Whenever these events
are not present at a given time, the dynamics is reduced
to just the decay process. An estimate for the probability
of having the event A x given some activity levels of the
excitatory and inhibitory populations is

pi-1(Axle, i) = be,pEE(CE)bi,pE,(cl):

V(cgeplepger—cige=b

where b, , (cg) and b; , _(c,) are binomial distributions,
by,(c) = (¥)pc(1 — p)N=¢, with e and i the number of
active excitatory and inhibitory clusters and ¢ represent-
ing the number of coactive clusters and connections. We
can only count the synaptic contribution if an active
cluster has a connection to another cluster. pgg, pgr
pie. and p;; are the probabilities of connections from
population to population as described earlier. Similarly,

pt—l(ﬂYle’ l) = be,pIE(CE)bi,p“(cl)'

Y(cg.cr)lcpgie—crgn=b

Then, we calculate

pi—1(Ax) = szfl(ﬂxié’, D)pi—1(e)p,—1 (i),
Ve,i
Pi-1(Ay) = > pii(Ayle, i)pi—i(e)p,—1 (i),
Ve,i
where pl*l(e) = bNEp,,](x=l)(e) and pt*l(i) =

by,p, (s=1(i). This assumes that the probability
distribution of the activity levels is unimodal and
very close to a binomial distribution [9]. We then solve
px=1) = p(x = JAx, x = 0)p,- | (Ax)p,—(x =
0) + py(x = llﬂ){rx = I)Ptfl(ﬂx)l’rfl(x =
D+ pyx = lLﬂX’x = O)Pt—iﬂx)l’t—l(x =
0) + plx = 1Ay, x = 0)p,|(Ax)p,—1(x = 0)
(with a similar expression for p,(y = 1)) to obtain the
following dynamical map:

px=1=pup, (Ax)+ (1 —wpx=1), @
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py=1=pup(Ay) +0—wp_y=1. (5

The smaller u the better is the equivalence between
the deterministic and stochastic equations. A value of
m = 0.1 seems to be a good compromise between com-
puting time and proximity to the deterministic system.
Figure 2 shows the similarities of the model with the
simulations for 2000 different random graphs. The
average activity of the excitatory population is vy =
((1/Ng)> {xi(1))—r. r+7)c and the inhibitory one is v; =
((1/N)S iyid=r.7+1)G. Where G represents the set of
graphs generated by Eq. (3) which do not lead to the
absorbing state. 7 is the offset to start recording after
some transient and 7T is chosen to average several cycles.

The main driving force of the system is the
excitatory population because of the short initial
pulse. There must be sufficient excitation to sustain the
activity of the network but not too much activity because
the network otherwise reaches its saturation level. To
reduce our search of the parameter space we use the
estimation for the activity given by Egs. (4) and (5), to
search the curve of balanced synaptic input [6]. We also
look at the maximum probability of crossing the thresh-
old, inspired by the ideas of [10] for boolean networks,
and, in addition, we estimate the probability of having
reproducible sequences. First, the curve of balanced syn-
aptic input is estimated from the implicit equation
Neve(PeePen PiesPii) 8e Pee— NV (Pee, Per Pies Pri) 81 PEr="b,
which is the total expected synaptic input into a given
excitatory cluster. Second, to estimate the curve where the
probability of crossing the threshold is maximal, we use
h=p(x=1x=0p,_(x =0+ pi(x =0lx =
p,_1(x = 1), where, for example, p,_(x=1|x=0)=
pix=1Ax,x=0)p, |(Ax) + p1(x =1[Ax,x =
0)p,_1(Ax)=pup,_(Ay). Expanding the probability
h as a function of the previous equations we obtain &=
plp—1(A)A = poi(x=1)+ (1 = p,o i (Ax)pi—1(x =

w
>

02 r d

pll

FIG. 2. Comparison between the simulations (solid lines with
error bars) and the theoretical estimation (dotted line) for the
excitatory (a) and inhibitory populations (b) obtained by using
pre = 0.05, pg; = 0.3, p;p = 0.1, and gf =2,¢' = 0.2 with
Ng = N; = 100.

1)]. Third, to estimate the probability of having repro-
ducible sequences we calculate the probability that two
clusters end up in the same state. In other words, r =
SnlPii( = Lxy = 1xy = s51,% = 55) + poy () =
0,x, = Olx; = 51, X3 = 52)]p,—1(x; = 51, X, = 52). To be
able to estimate this we assume that the two clusters under
consideration are statistically independent. We then ex-
pand on the events A y and A y as shown above to obtain
a similar expression to h.

Results.—As pointed out in boolean networks [11] we
also observe in our simulations that limit cycles involve a
small number of clusters bounded by a frozen component.
The region where these limit cycles are found is indicated
in Fig. 3(a). The solid lines represent the curves of pgg as
a function of p;; solved for the implicit equation of the
balance condition. For the parameter values indicated in
Fig. 3 we find a small corridor from pgr = 0.02 to pgr =
0.06 where RS is found in the simulations. The dashed
lines represent the probability of crossing the threshold 4.
We can see the maximum of 4 is always slightly shifted to
the right from the curve corresponding to balanced syn-
aptic input. Moreover, the theoretical curves converge into
one single straight line for increasing values of p;z. This
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FIG. 3. (a) Estimation of the curve of balanced synaptic input

(solid line) and maximum probability of crossing the threshold.
The parameter values of this figure are pgy; = 0.3 and gf =
2, g" = 0.2 with Nz = N; = 100 for p;z = 0.0, 0.05, 0.1, 0.2,
0.3, 0.4. (b-d) Result of simulations of the limit cycle (solid
lines) and fixed points (dashed lines) with parameter values for
(b) pgr = 0.04, (¢) pgg = 0.05, and (d) pgr = 0.07. We also
compare them to the probability of crossing the threshold, #,
which is the dotted line.
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FIG. 4. Entropy measure (solid line) of the reproducibility of
the sequential activity for parameter values pgr = 0.05 as in
Fig. 3. The dashed line represents the estimation of falling into
different states, 1 — r.

limiting line is the boundary of an area (gray patterned
area) where RS cannot be obtained. This is due to the
excessive amount of excitation in the system that drives it
into saturation levels. Figures 3(b)—3(d) show the results
of the simulations after the transients. The maximal
probability for finding limit cycles is observed at the
maximum of the probability of crossing the threshold #.
Comparing to Fig. 3(a) we can see that for pgr = 0.07
(the gray area) no limit cycles exist. Comparing the
simulations shown in Fig. 3(b) and 3(c) the minimum
number of fixed points is found on the left of the theo-
retical lines. Therefore, the theoretical lines bound the
region where RS can be found and 4 can pinpoint the
location of maximal limit cycle occurrence.

Sensory systems are known to respond fast to external
stimuli. Thus, we want to determine the locations of RS
during transient dynamics. We also want to compare the
parameter values to those ones obtained by the balanced
network conditions. Figure 4 shows the entropy measure
as defined earlier as a function of p;; for the same
parameter values as in Fig. 3(c). The worst reproducibility
values are observed near the condition of balanced exci-
tation and inhibition. The main reason is that in this area
we find chaotic behavior and the smallest percentage of
fixed points. The left region of the balanced network
displays a large percentage of fixed points. Therefore, it
is not surprising to find better reproducibility. The right
hand side of the balanced network condition shows a
plateau of reproducibility also due to the fast increase of
fixed point percentage. The estimation of reproducibility r
disregards any correlations between clusters, nevertheless
it gives a qualitative indication of where it is more likely
to find RS.

Conclusion.—Because even the simplest part of a brain
is an extremely complex system in terms of the number of

neurons and, mainly, synapses, and the variability of
connections, a simple estimation shows that is not pos-
sible to specify the network connectivity in the genome.
We showed that just a few parameters need to be con-
trolled by the genetic code to be able to generate RS. We
showed that reproducible transient dynamics is appropri-
ate for sequence generation if the network is far from
having balanced synaptic input. The dynamical mecha-
nisms underlying the generation of sequences need a more
detailed analysis. However, the similarity of the random
network data with sequences generated by complex cir-
cuits governed by the winnerless competition (WLC)
principle [12] might lead us to believe that WLC is a
mechanism responsible for both rhythmic and transient
RS in random networks.
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