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We study the ground state properties of the critical Lipkin-Meshkov-Glick model. Using the
Holstein-Primakoff boson representation, and the continuous unitary transformation technique, we
compute explicitly the finite-size scaling exponents for the energy gap, the ground state energy, the
magnetization, and the spin-spin correlation functions. Finally, we discuss the behavior of the two-spin
entanglement in the vicinity of the phase transition.
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Although Lipkin, Meshkov, and Glick (LMG) intro-
duced the model bearing their name in nuclear physics
[1], it is of much broader interest. It has thus been peri-
odically revisited in different fields, such as statistical
physics of spin systems [2,3] or Bose-Einstein conden-
sates [4] to cite only a few. More recently it has also
drawn much attention in the quantum information frame-
work, where it has been shown to display interesting
entanglement properties [5–8] different from those ob-
served in one-dimensional models [9,10]. After almost
four decades, it has been proved to be integrable using the
algebraic Bethe ansatz [11,12] or mapping it onto
Richardson-Gaudin Hamiltonians for which exact solu-
tions have been proposed [13]. However, although this
integrability provides some important insights about the
structure of the spectrum, it is useless to compute some
physical quantities, such as the correlation functions, for
a large number of degrees of freedom.

In the spin language that we adopt here, the LMG
model describes mutually interacting spins 1=2, em-
bedded in a magnetic field. In the thermodynamical limit,
it undergoes a quantum phase transition that is well
described by a mean-field analysis. This transition can
be first or second order depending whether the interaction
is antiferromagnetic or ferromagnetic. In the latter case
and at finite size, some nontrivial scaling behavior of
observables have been found numerically [2,3]. For in-
stance, the energy gap seems to behave as N�1=3 at the
critical point where N is the number of spins.

In this Letter, we explicitly compute these finite-size
scaling exponents combining a 1=N expansion in the
standard Holstein-Primakoff transformation, the con-
tinuous unitary transformations, and a scaling argument.
First, we calculate the energy gap for which we detail the
procedure. We also give the leading finite N corrections
for the ground state energy, the magnetization, and the
spin-spin correlation functions. In a second step, we dis-
cuss the two-spin entanglement properties through the
concurrence [14] which is directly related to these func-
tions. These latter results are in excellent agreement with
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recent numerical studies [5,15] which predict a cusplike
behavior of the concurrence at the transition point.

We consider the following Hamiltonian introduced by
LMG [1]:
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� � �S2� � S2��; (3)

where the ��’s are the Pauli matrices, S� �
P
i�

i
�=2, and

S� � Sx � iSy. The 1=N prefactor ensures that the free
energy per spin is finite in the thermodynamical limit.
Here we focus on the ferromagnetic case (� > 0) and all
our results are valid for j
j 	 1 (the case j
j> 1 being
trivially obtained by a simple rescaling of �). In this
situation, the Hamiltonian (3) displays a second-order
quantum phase transition at � � jhj [2,3]. In the sequel,
we restrict our discussion to the phase jhj 
 �, and with-
out loss of generality, we set h � 1.

The Hamiltonian H preserves the magnitude of the
total spin and does not couple states having a different
parity of the number of spins pointing in the magnetic
field direction (spin-flip symmetry), namely,

�H;S2� � 0;
�
H;

Y
i

�iz

�
� 0; (4)

for all values of the anisotropy parameter 
. In the iso-
tropic case 
 � 1, one further has �H; Sz� � 0, so that H
is diagonal in the eigenbasis of S2 and Sz. Because of the
ferromagnetic interaction between the spins, the ground
state and the first excited state always lie in the subspace
of maximum spin S � N=2.
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In order to analyze the spectrum of H in the large N
limit and to capture the finite-size corrections, we per-
form a 1=N expansion of the low-energy spectrum, fol-
lowing the ideas of Stein [16]. We first use the Holstein-
Primakoff boson representation of the spin operator [17]
in the S � N=2 subspace given by

Sz � S� aya � N=2� aya; (5)

S���2S�aya�1=2a�N1=2�1�aya=N�1=2a�Sy�; (6)

where the standard bosonic creation and annihilation
operators satisfy �a; ay� � 1. This representation is well
adapted to the computation of the low-energy physics
with hayai=N � 1. After inserting these latter expres-
sions of the spin operators in Eq. (3), one expands the
square roots in their Taylor series and writes the result in
normal ordered form with respect to the zero boson state.
The Hamiltonian then reads H � H0 �H�

2 �H�
2 , with

H0 �
X

�;�2N

h���0;�A�
N����1

; H�
2 �

X
�;�2N

h���2;�a
y2
A�

N��� ; (7)

and with H�
2 � �H�

2 �
y and A� � ay�a�. The index �

keeps track of the number of bosonic operators, and for
a given �, the superscript � codes the successive 1=N
corrections. For instance, the nonvanishing coefficients of
H0 are given by h�0�0;0��1, h�1�0;0 � 0, h�0�0;1 � 2� ��1� 
�,

h�1�0;1 � ��1� 
�, and h�0�0;2 � ��1� 
�.
Next, the Hamiltonian is diagonalized order by order

in 1=N using the continuous unitary transformation
method, introduced by Wegner [18] and independently
by Głazek and Wilson [19] (for a pedagogical introduc-
tion to this technique, see Ref. [20]). Note that the method
has been applied to the LMG model in [21–24], but its
simultaneous use with the 1=N expansion originates in
[16]. The main idea is to diagonalize the Hamiltonian in a
continuous way starting from the original (bare)
Hamiltonian H � H�l � 0�. A flowing Hamiltonian is
then defined by

H�l� � Uy�l�HU�l�; (8)

where l is a scaling parameter such that H�l � 1� is
diagonal. A derivation of Eq. (8) with respect to l yields
the flow equation

@lH�l� � ���l�;H�l��; where ��l� ��Uy�l�@lU�l�: (9)

The anti-Hermitian generator ��l� must be chosen to
bring the final Hamiltonian to a diagonal form. Wegner
proposed��l� � �Hd�l�; Hod�l�� � �Hd�l�; H�l��, whereHd

and Hod are the diagonal and off-diagonal parts of the
Hamiltonian. For our problem, it would read ��l� �
�H0�l�; H

�
2 �l� �H�

2 �l��. Such a choice suffers from the
drawback that the tridiagonality of H�l � 0� is lost dur-
ing the flow and that H�l� contains some terms which
create any even number of excitations. This problem can
be circumvented using the so-called quasiparticle con-
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serving generator ��l� � H�
2 �l� �H�

2 �l� that we use here.
This generator was first proposed in [21,25] and given a
deeper physical meaning in [26].

More generally, to compute the expectation value of
any operator � on an eigenstate j i of H with eigenvalue
E, one must follow the flow of the operator ��l� �
Uy�l��U�l�, by solving @l��l� � ���l�;��l��. Indeed,
one has

h j�j i � h jU�l � 1���l � 1�Uy�l � 1�j i; (10)

where Uy�l � 1�j i is simply the eigenstate of the di-
agonal Hamiltonian H�l � 1� with eigenenergy E. In
principle, one should follow the evolution of the Sx, Sy,
and Sz observables, from which all others can be deduced.
However, since we aim at computing the ground state
magnetization and spin-spin correlation functions, and
because of the symmetries of the model, the calculation
can be performed more simply as follows. First, the spin-
flip symmetry (4) implies

hSxi � hSyi � 0; (11)

hSxSzi � hSzSxi � hSySzi � hSzSyi � 0: (12)

Furthermore, since the maximum spin representation is
one dimensional, the coefficients of the eigenstates in this
sector can be chosen to be real so that hfSx; Sygi � 0. We
are thus led to consider only the following (extensive)
observables: 2Sz, 4S2x=N, 4S2y=N, and 4S2z=N. Of course,
the structure of the flowing observables does not remain
as simple as those of the initial conditions of the flow,
even with our choice of the generator. In a notation
similar to (7), all these observables can be written as � �
�0 �

P
k��

�
k ���

k �, where the sum runs over all non-
negative even integer k’s, and

�0 �
X

�;�2N

!���
0;�A�

N����1
; ��

k �
X

�;�2N

!���
k;�a

ykA�
N����k=2�1

: (13)

We have omitted the dependence on the flow parameter l
of the!’s which is implicit in the following. For instance,
the initial conditions for 2Sz are !�0�

0;0 � 1, !�0�
0;1 � �2,

with all other coefficients vanishing.
The commutators ��;H� and ��;�� are computed us-

ing �a; ay� � 1 and basic counting results, yielding the
flows

@lh
���
0;� � 2

X
n;�0;�0
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�0;���0�2�nh

��0�
2;�0h
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@lh
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X
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��0�
2;�0!
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with the definitions

A k;n
�0;�00 � n!�Cn�0Cn�00 � Cn�0�2C

n
�00�k�2�; (18)

B k;n
�0;�00 � n!�Cn�0Cn�00�k � Cn�0�2C

n
�00 �; (19)

Cn� being the binomial coefficient �!=�n!��� n�!�. The
sums in (14)–(17) are constrained by the fact that all
subscripts and superscripts have to be positive. For ex-
ample, in (14), n runs from 0 to 1� �, �0 from 0 to ��
2� n, and �0 from 0 to �� 1� n. At the lowest non-
trivial order in 1=N, Eqs. (14) and (15) become

@lh
�1�
0;0 � �4�h�0�2;0�

2; @lh
�0�
0;1 � �8�h�0�2;0�

2;

@lh
�0�
2;0 � �2h�0�0;1h

�0�
2;0:

(20)

These equations are the well-known Bogoliubov trans-
form, written in a differential form [20].

In [16], Stein integrated analytically the flow equations
(14) and (15) for 
 � �1 and computed the 1=N correc-
tions to the ground state energy and to the gap. For our
purpose, we generalized his solution to any value of 
 and
went to order 1=N3. Furthermore, we also computed the
exact solutions to (16) and (17) and computed the 1=N2

corrections to the extensive observables. Detailed calcu-
lations will be presented elsewhere [27].

To keep the presentation short, we here deal only with
the results obtained for the energy gap �. We found
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�O
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�
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where ���; 
� � �1� ���1� 
��, ��1� � 2���; 
�1=2

is the mean-field gap [2,3], and the Pi’s and Qi’s are
polynomial functions of � and 
. For the isotropic case

 � 1, one has P1��; 1� � 4��1� ��2, Q1��; 1� �
�2��1� �� and all contributions of order higher than
1=N vanish, so that we recover the exact result
�
�1�N� � 2�1� �� � 2�=N.

Let us now discuss the case 
 < 1 for which we have
checked that � � 1 is neither a root of the Pi’s nor of the
Qi’s. The result (21) shows that all 1=Ni corrections
diverge when � approaches the critical value 1 in the
infinite system, such that the larger the values of i, the
stronger the divergence. However, physical quantities
cannot display any singularity at finite N. Using the usual
ideas of finite-size scaling [28] generalized in [2,3] to
infinitely coordinated systems, we can thus compute the
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scaling critical exponents. To this end, let us suppose �
close to its critical value 1. One can then neglect all Q
terms which are less divergent than the P ones. In this
limit, expression (21) becomes a function of the variable
N��
; ��3=2, namely,

��N� ’ ��1�F ��N��
; ��3=2; 
�; for � ’ 1: (22)

Thus, the scaling function F � for the gap must behave as
�N��
; ��3=2��1=3 in the vicinity of the critical point � �
1, for its product with the mean-field gap to be nonsin-
gular. Consequently, one gets ��N� � N�1=3. Of course
we have checked the scaling hypothesis only up to the
order 1=N3, but the integrability of the LMG model leads
us to conjecture that the very simple structure of the 1=N
expansion exhibited in (21) is the same at all orders.

We have performed the same analysis for the ground
state energy, the magnetization, and the two-spin corre-
lation functions for the ground state. All results are
summarized below and detailed calculations will be pre-
sented in a forthcoming publication [27].

��N� � a�N�1=3; (23)

e0�N� � �1� �1� 
�=�2N� � aeN
�4=3; (24)

2hSzi=N � 1� 1=N � azN
�2=3; (25)

4hS2xi=N2 � axxN�2=3; (26)

4hS2yi=N2 � ayyN�4=3; (27)

4hS2zi=N2 � 1� 2=N � azzN�2=3; (28)

where e0 denotes the ground state energy per spin. In each
of the above expressions, we have first written the (exact)
nonsingular contributions and, second, the term coming
from the resummation of the most singular terms in the
1=N expansion. Let us note, however, that in (25) and
(28), the N�2=3 terms dominate the large N behavior. The
coefficients a are real numbers that cannot be computed
within our approach since the scaling argument provides
only the exponents. Nevertheless, let us note that azz �
�axx since for all N, one has

4

N2
�hS2xi � hS2yi � hS2zi� �

4S2

N2 � 1�
2

N
: (29)

As hS2xi is positive, one must also have axx 
 0. One can
furthermore infer that N�4=3 corrections must exist in
4hS2xi=N2 and/or in 4hS2zi=N2 to cancel the one of
4hS2yi=N2 in Eq. (29).

These results are in excellent agreement with the nu-
merical data [3], where the exponents for � and for
4hS2xi=N2 were conjectured. However, the scaling expo-
nent 2=3 for 2hSzi=N differs from that found in [15]
�0:55� 0:01�. This discrepancy comes from the too small
system size investigated in [15] (N � 500 spins). We have
4-3
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indeed performed a numerical study up to N � 214 spins
and checked that the large N leading exponent is indeed
2=3 [27].

The finite-size scaling of the correlation functions also
allows us to discuss the entanglement properties of the
critical LMG model which have been the subject of
several studies [5–7]. For the ferromagnetic case consid-
ered here, it has been shown numerically that the two-
spin entanglement, as measured by the (rescaled) con-
currence [14], displays a singularity at � � 1. Actually, as
shown by Wang and Mølmer [29], the concurrence C for
symmetric spin systems can be simply expressed in terms
of the spin-spin correlation functions. More precisely, for
the present case, one has

�N � 1�C �
2

N
�jhS2x � S2yij � N2=4� hS2zi�: (30)

At the critical point, using the results (26) and (27) and
axx 
 0, one can deduce that hS2x � S2yi is positive. Then
using (29) and (27) one gets

�N � 1�C��1 � 1�
4hS2yi

N
� 1� ayyN

�1=3: (31)

This behavior is in agreement with the numerical study of
the finite-size scaling presented in [5,15]. In the thermo-
dynamical limit (N ! 1), and in the phase � < 1, the
Bogoliubov transform (20) also gives [27]

lim
N!1

�N � 1�C�<1 � 1�

����������������
1� �
1� 
�

s
; (32)

which generalizes to any anisotropy parameter the ex-
pression recently given by Reslen et al. [15] for 
 � 0.

In summary, we have used the Holstein-Primakoff
transformation and the continuous unitary transforma-
tions to analyze the finite-size corrections of several
observables in the LMG model. Using a 1=N expansion
and simple scaling arguments, we have captured non-
trivial exponents that had been conjectured for several
decades (see, e.g., [2,3]) but had never found any analyti-
cal support. This powerful combination of both methods
clearly opens many routes to investigate. In principle, the
physics of the broken phase �� > 1� could also be tackled
using the same approach, after performing a rotation
bringing the z axis along one of the two directions of
the classical magnetization. However, in this phase, the
gap, for instance, is known to behave like exp��aN� [30]
and may not be extracted from a 1=N expansion.
A contrario, the behavior of the other quantities discussed
here should be computed along the same line.

Finally, we wish to emphasize that the results presented
here are also relevant for the Dicke model [31]. Indeed, in
the zero temperature limit, the LMG model can be put in a
one-to-one correspondence with this latter model as re-
cently shown in [15].
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