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Superconductivity in Boron-Doped Diamond
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Superconductivity of boron-doped diamond, reported recently at Tc � 4 K, is investigated exploiting
its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising
from the C-C bond-stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its
high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength � �
0:5 leads to Tc in the 5–10 K range and makes phonon coupling the likely mechanism. Higher doping
should increase Tc somewhat, but the effects of three dimensionality primarily on the density of states
keep doped diamond from having a Tc closer to that of MgB2.
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The discovery of new types of superconducting mate-
rials has accelerated since the discovery of the high
temperature superconductors, with a recent breakthrough
being the discovery of superconductivity at Tc � 40 K in
the simple (structurally and electronically) compound
MgB2 [1]. The origin of its remarkable superconductivity
is now understood to arise from charge carriers doped (in
this case, self-doped) into very strongly bonding states
that in turn respond very sensitively to the bond-
stretching vibrational modes [2]. The strong B-B bonds
in the graphitic layers of MgB2 make it appear near
optimal, although graphite itself and diamond are mate-
rials that have even stronger bonds. Of these two, only
diamond has bonding states that can conceivably become
conducting through hole doping [3]. The recent report by
Ekimov et al. [4] of superconductivity at 4 K in very
heavily boron-doped diamond revives the question of
mechanisms in strongly covalent materials. Con-
firmation has been provided by Takano et al. who report
Tc � 7 K in B-doped diamond films [5].

While the study of B as a hole dopant in diamond has a
long history, there have been recent developments due to
the ability to dope diamond films more heavily (to and
beyond the 1020 cm�3 range) than was possible previ-
ously. In spite of its growing importance, and unlike
the situation for donors [6], there has been little theoreti-
cal work on the acceptor state (such as determining its
spatial extent) beyond obtaining the structural and vibra-
tional properties of the isolated B impurity [7]. An iso-
lated B atom is an acceptor with a binding energy of
0.37 eV [8] for which effective mass theory is not appli-
cable, but the behavior of B-doped diamond up to and
somewhat beyond the concentration for insulator-metal
(Mott) transition cM � 2� 1020 cm�3 has been rather
well studied experimentally [8]. (The B concentration
achieved by Ekimov et al. is about csc � 5�
1021 cm�3 � 25cM, with a hole carrier density of nearly
the same, and introduces a new regime of metallic dia-
mond that is yet to be understood.) At this concentration,
B dopants are on average 5–6 Å apart and their donor
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states, which form an impurity band already at cM �
1
25 csc, broaden considerably and overlap the valence
band edge. In addition, Mamin and Inushima have
pointed out [9] that as the B concentration increases
(and they were not yet thinking of the 1021 range) many
of the donor states become more weakly bound states of
B-related complexes that would encourage formation of
broader bands. Fontaine has analyzed the concentration
dependence of the activation energy [10] (0.37 eV at low-
concentration) and concluded that it vanishes at c � 8�
1020 cm�3 � 1

6 csc; for larger concentrations the system
would be a degenerate metal.

Given these indications of degenerate behavior even
below 2.5% doping, in this Letter we adopt the viewpoint
that the majority fraction of the hole carriers resides in
states overlapping the diamond valence band, and behave
primarily as degenerate valence band holes. Boeri et al.
[11] have taken a similar viewpoint, and two supercell
calculations [12,13] have verified this degenerate metal
picture. The distinctly different low-concentration, non-
metallic limit has also been suggested [14].We investigate
the magnitude and effect of hole-phonon coupling anal-
ogously to what has been found to drive superconductiv-
ity in MgB2, and present evidence that at hole-doping
levels similar to that reported, the hole–bond-stretch
coupling is surprisingly strong and makes phonon ex-
change a prime candidate for the mechanism of pairing.
In the case that such coupling is strong, it can be verified
by spectroscopy of the Raman-active bond-stretch mode.
In fact, Ekimov et al. report [4] a Raman spectrum in
which the sharp diamond peak at 1332 cm�1 has van-
ished, leaving spectral weight in the 1000–1300 cm�1

range. This behavior is a plausible extrapolation (consid-
ering they are very differently prepared materials) from
more lightly B-doped films in which Ager et al. observed
an initial weakening and broadening of the 1332 cm�1

mode [15], and a transfer of spectral density to peaks in
the 940–980 cm�1 range for concentrations �csc. Zhang
et al. reported, for films with concentration � 1

3 csc, a
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broad peak at 1200 cm�3 and a very broad feature peak-
ing at 485 cm�3 [16].

For the sake of definiteness, we consider a hole con-
centration of 0:025=carbon atom, 10% less than the B
concentration (csc) determined for the superconducting
diamond films. At this concentration the hole Fermi en-
ergy EF lies 0.61 eV below the valence band maximum,
and the diamond Fermi surfaces consist of three zone-
centered ‘‘spheroids.’’ The outer one, in particular, differs
considerably from spherical due to the anisotropy of the
band mass, but effects of anisotropy will be decreased by
disorder scattering and in any case would give only sec-
ond order corrections to the properties that we calculate.

The system we consider is thus 2.5% hole-doped dia-
mond. The key points here are (1) the carrier states are the
very strongly covalent bonding states that make diamond
so hard, and (2) these states should be sensitively coupled
to the bond-stretching mode, which lies at the very high
frequency of 1332 cm�1 (0.16 eV) in diamond. These
ingredients are the same as those prevailing in MgB2.
There are differences, of both a positive and a negative
nature. In MgB2 only two of the nine phonon branches are
bond stretching, whereas in diamond these comprise three
of the six branches. On the other hand, MgB2 is strongly
two dimensional in its important bands (
 bands), which
means a near-step-function increase in the density of
participating states as doping occurs; the states in dia-
mond are three dimensional and their Fermi level density
of state N�0� increases with doping level more slowly.

A look at the phonon spectrum of diamond [17] reveals
that the three optic modes are the bond-stretching ones,
and they have little dispersion so ��0 � 0:15 eV is their
common unrenormalized frequency. The theory of
carrier-phonon coupling and the resulting superconduc-
tivity in such systems are well developed, and the im-
portant features in MgB2-like systems have been laid out
explicitly. The coupling strength � is given rigorously for
an element by

� �

P

b
Nb�0�hI

2
bi

Mh!2i
�

N�0�I2rms

M!2
0

; (1)

where Nb�0� is the DOS of band b, M is the carbon mass,
I2b 
 hhjIb�k; k0�j2iiFS is the Fermi surface averaged
electron-ion matrix element squared for band b, and
h!2i is an appropriately defined mean square frequency
which simplifies to !2

0, the bond-stretch frequency renor-
malized by the hole doping. The sum over bands b has
been displayed explicitly but finally leads to an rms
electron-ion matrix element in the numerator, and the
Fermi level density of states is N�0� � 0:060 states=eV
per cell per spin.

Because of nonsphericity and nonparabolicity of the
three inequivalent bands, substantial computation would
be required to obtain accurate numbers (and anharmonic
23700
and nonadiabatic corrections would change them, see
below). There are two ways to obtain approximate values
in a pedagogical manner: (1) calculate the Q � 0 defor-
mation potentials to obtain the matrix elements for the
optic modes, or (2) calculate the phonon softening and use
the lattice dynamical result

!2
Q � �2

Q 
 2�Q Re��Q; 0�;

!2
0 � !2

Q!0 ! �2
0 � 2�0N�0�jMj2;

(2)

where ��Q;!� is the phonon self-energy arising from the
doped holes, and M is the electron-phonon matrix ele-
ment and is determined by Irms (see below). We apply both
methods to obtain estimates of the coupling strength.

The calculations were done with the WIEN2K linearized
augmented plane wave code [18]. The basis size was fixed
by RmtKmax � 7:0 with a sphere radius 1.2 for all calcu-
lations. While 110 irreducible k points were used for pure
diamond, 1156 k points in the irreducible wedge for the
B-doped diamond virtual crystal calculations [nuclear
charge Z � �1� x�ZC 
 xZB � 5:975], because the
Fermi surface volume had to be sampled properly to
account for screening. Alloy [coherent potential approxi-
mation (CPA)] calculations using the full potential local
orbital code [19] give bands as in our virtual crystal
model, the main difference [20] being small disorder
broadening that would not change our conclusions.

The central quantity in Eq. (1) is the matrix element,
which can be expressed in terms of the deformation
potential D; we use the definitions of Khan and Allen
[21] to avoid ambiguity. D is the shift in the hole (va-
lence) band edge with respect to the bond-stretching
motion, whose scale is given by u0 �

�������������������
�h=2M�0

p
�

0:034 �A. The stretching mode is threefold degenerate
and can have any direction of polarization. We have
chosen the polarization in which atoms move along a
h111i direction. Under this displacement, the threefold
eigenvalue splits (see Fig. 1 for the case of doped dia-
mond) at the rate of ��"upper � "lower�k�0=�dbond �
21 eV= �A, where dbond is the bond length. Since the two-
fold band splits half as rapidly as the single band (and
oppositely) this leads to the two deformation potentials of
magnitude D1 � 14 eV= �A for the nondegenerate band
and D2 � 7 eV= �A for the doublet, for intrinsic diamond.
The large deformation potential is 60% larger than the
(already large) analogous one in MgB2.

The results for 2.5% B doping are needed for calcula-
tion of the coupling strength, and are shown in Fig. 1.
They are renormalized by B doping by 3% (downward)
from those of intrinsic diamond, so again we have D1 �

14 eV= �A, D2 � 7:0 eV= �A. These deformation potentials
are undoubtedly the largest yet encountered for any me-
tallic solid, being directly related to the great bond
strength of diamond. Since the three deformation poten-
tials contribute additively to the coupling strength, we
3-2
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FIG. 2 (color online). Plots of the energy of distortion for the
frozen-in bond-stretch mode, for (top straight line) undoped
diamond, and (bottom line) 2.5% B-doped diamond. The
coordinate uC is for one of the two identically displaced atoms.
Pristine diamond follows a quadratic plus lowest-order anhar-
monic form �E�u� � A2u2 
 A3u3 accurately, as indicated by
the straight dashed line. After doping the �E�u� functional
form becomes very complex. The horizontal arrows indicate
the atomic displacements for which one (or two) Fermi surfaces
disappear. The inset shows the �E�u� curves themselves.
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FIG. 1 (color online). Virtual crystal bands of 2.5% B-doped
diamond without (dashed lines) and with (solid lines) a bond-
stretch phonon frozen in. The atomic displacement a

���
3

p
�x �

0:0309 �A is just enough to transfer all holes to within a single
k � 0 centered Fermi surface. The horizontal dashed line
indicates the Fermi level (aligned for this plot). X denotes
the usual zone boundary point, and L designates the zone
boundary point in the h111i direction parallel to the atomic
displacements.
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simplify by using the root mean square value Irms �

10 eV= �A. The rms electron-phonon matrix element, to
be used below, is M �

���������������
!0=�0

p
u0Irms � 0:70 eV; here

!0 is the renormalized optic frequency.
Together with the value N�0� � 0:060 states=eV-spin,

M�2
0 � 65 eV= �A2, and (calculated below) !2

0 � 0:68�2
0,

we obtain from Eq. (1) the coupling strength � � 0:55.
The coupling is confined to a set of three optic branches
which comprise a narrow peak centered at !0. The con-
ventional theory, neglecting very minor strong-coupling
corrections [22], gives Tc � �!0=1:2� exp��1=� �

1
��

����, where �� is an effective Coulomb repulsion that is
uncertain for doped diamond. Using the conventional
value �� � 0:15 with !0 � 0:128 eV gives Tc � 9 K,
gratifyingly (and probably fortuitously) close to the ex-
perimental values of 4 to 7 K. To obtain the initially
observed value Tc � 4 K would require � � 0:48, or al-
ternatively �� � 0:20, i.e., relatively small changes.

A less direct way of obtaining the coupling strength,
but one that (numerically) includes averaging over bands
properly, is to calculate the renormalized phonon fre-
quency and apply Eq. (2). The calculated change in energy
versus atomic displacement, plotted as �E�u�=u2, is
shown in Fig. 2, both for intrinsic and doped diamond.
The difference due to doping is striking. The result for
diamond is simple to understand: the harmonic u2 term
gives �harm � 1308 cm�1 similar to literature values
[17,23], and the A3u3 term quantifies its anharmonicity.

The �E�u�=u2 curve for the doped case (see Fig. 2) is
much more complex. The reason is clarified by the arrows
on the plot, which mark the displacements where some
23700
piece(s) of Fermi surface vanishes. One of these values of
displacement is also used for the deformation potential
plot of Fig. 1, where one shifted band edge is lying exactly
at EF. Boeri et al. have described how, at such topological
transitions of the Fermi surface, the energy is nonanalytic
[24]. In Fig. 2 one can imagine a straight line behavior
similar to (and nearly parallel to) that of diamond for uC
between the two topological transitions, with changes of
behavior occurring beyond each transition point. It is of
special relevance that these positions are roughly at the
bond-stretch amplitude; hence they are physically
important.

Returning to the coefficient of the u2 (harmonic) term,
for the doped case it is 0.68 that of diamond, giving (in
harmonic approximation) !0 � 1070 cm�1. This renor-
malization of the square of the optic mode frequency [see
Eq. (2)] by 32% is a vivid indication of the strong cou-
pling, even for the case of 2.5% holes. Substituting the !0

ratio into Eq. (2) allows us to extract the electron-phonon
matrix element M � 0:67 eV, within 5% of the value
obtained from the deformation calculation. Combined
with the deformation potential result, the predicted cou-
pling strength is � � 0:53� 0:03. As mentioned above,
this value is quite consistent with the observed critical
3-3
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temperature, but certainly such good agreement may not
be warranted.

Our treatment neglects some complicating features.
The Jahn-Teller splitting of the isolated B substitutional
impurity (0:8 cm�1 from Fabry-Pérot spectroscopy [25])
is 3 orders of magnitude smaller than energy differences
involved in the bond-stretch mode and therefore is negli-
gible. It has been suggested [12,13] that supercells offer a
more realistic model than a virtual crystal treatment. Our
calculation of a C31B supercell indicated strong ordered-
boron effects (which are unphysical), and our CPA alloy
calculations [20] give bands like the virtual crystal
model, with small disorder broadening added. Another
factor is anharmonicity, which includes conventional an-
harmonicity and the nonadiabatic effects that cause the
nonlinearity of �E�u�=u2 in Fig. 2. Making the anhar-
monic corrections need not change the effective phonon
frequency greatly, as shown for MgB2 by Lazzeri et al.
[26] who found that for MgB2 three- and four-phonon
corrections gave strongly canceling corrections to the
vibrational frequency. The validity of the Migdal-
Eliashberg theory itself becomes an interesting question,
and more so for lower doping levels. For the 2.5% con-
centration considered here, the ratio of phonon frequency
to electron energy scales is !=EF � 0:25, certainly not
the small parameter that is usually envisioned as a per-
turbation expansion parameter. Doped diamond provides
a new system in which to investigate nonadiabatic effects.

Now we summarize. Based on the experimental infor-
mation available so far, the B-doping level in diamond
achieved by Ekimov et al. should result in hole doping of
the diamond valence bands to a level EF � 0:6 eV.
Calculations bear out the analogy to MgB2 that deforma-
tion potentials due to bond stretching are extremely large,
and evaluation of the hole-phonon coupling strength using
conventional theory leads to � � 0:55, a renormalization
of the optic mode frequency by �20%, and Tc in the 5–
10 K range. These results indicate that phonon coupling is
the likely candidate for the pairing mechanism, consis-
tent with the conclusions of Boeri et al. [11]. The low
carrier density (for a metal) implies both poor screening
of the Coulomb interaction and the intrusion of nonadia-
batic effects, which are primary candidates for further
study. Higher doping levels should increase Tc, but proba-
bly not to anything like that occurring in MgB2.
Definitive calculations will require CPA calculations of
the electron-phonon coupling characteristics.
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