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Three-Dimensional MgB2-Type Superconductivity in Hole-Doped Diamond
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We substantiate by numerical and analytical calculations that the recently discovered superconduc-
tivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as
in MgB2, albeit in three dimensions. Holes at the top of the zone-centered, degenerate �-bonding
valence-band couple strongly to the optical bond-stretching modes. The increase from two to three
dimensions reduces the mode softening crucial for Tc reaching 40 K in MgB2. Even if diamond had the
same bare coupling constant as MgB2, which could be achieved with 10% doping, Tc would be only
25 K. Superconductivity above 1 K in Si (Ge) requires hole doping beyond 5% (10%).
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Recently, superconductivity below Tc�4 K was re-
ported in diamond doped with x�3% boron, that is,
with �0:03 holes per carbon atom [1]. Such high hole-
doping levels can be achieved due to the small size of
boron. It had previously been observed that the prominent
Raman line caused by the zone-center optical phonons at
1332 cm�1 downshifts and broadens significantly upon
heavy boron doping [2]. In this Letter we shall make
plausible that the superconductivity in hole-doped dia-
mond is due to the coupling of the holes to the optical
zone-center phonons, a mechanism similar to the one
causing high-temperature superconductivity in MgB2,
but without some of its interesting features. We shall
also estimate transition temperatures for hole-doped Si
and Ge.

The discovery [3] of superconductivity below 40 K in
MgB2, a binary compound isostructural and isoelectronic
with graphite, came as a surprise for the scientific com-
munity. By now, it is well understood what the mecha-
nism is and why MgB2 is special [4–8]: In contrast to
other known sp2-bonded superconductors, such as inter-
calated graphite, alkali doped fullerides, and organic
superconductors whose charge carriers are exclusively �
electrons, MgB2 has holes at the top of the bonding �
bands at the zone center. These holes, on two narrow
Fermi cylinders with radii �1=5 of the Brillouin-zone
radius, couple strongly �
� 1� to the two optical bond-
stretching modes with q�2kF �kBZ, giving rise to a
strong two-dimensional Kohn anomaly in the phonon
spectrum. This strong coupling between a few zone-
center holes and optical phonons is what drives the
high-temperature superconductivity in MgB2. Experi-
ence shows [5], and it can be proved for parabolic bands
with 2kF � kBZ [9] that the coupling constant is given by
the Hopfield expression,


 �
ND2

M!2 ; (1)

where N is the density of states (DOS) per spin at the
04=93(23)=237002(4)$22.50 23700
Fermi level of the � holes. Moreover, �Du is the splitting
of the degenerate top of the � band by the displacement
eu of a frozen, optical zone-center phonon with normal-
ized eigenvector e and energy !. The optical phonons are
softened by the interaction with the holes, !2�!2

0=�1	
2
� when q < 2kF, and that significantly enhances 
 and
Tc�!exp��1=
�. This softening is presumably weak-
ened by anharmonicity [10,11]. The DOS is independent
of doping because the � band is two dimensional. As a
consequence, a decrease in the number of holes should not
cause 
 to decrease, except through the anharmonic
hardening of ! caused by the decrease of EF [12]. In
stoichiometric MgB2 there are more carriers in the �
bands than in the � bands (0.09 per B), but the former
couple far less to phonons than the latter, and since there
seems to be very little impurity scattering between the �
and �- bands, MgB2 is the first superconductor which
clearly exhibits multiple gaps below a common Tc
[7,8,10,13].

Instead of having � bands and 3 two-dimensional
bonding � bands, sp3-bonded semiconductors like dia-
mond have 4 three-dimensional bonding � bands. The top
of this valence band is threefold degenerate with symme-
try T2g, and so are the zone-center optical phonon modes.
Like in MgB2, � holes with small kF should therefore
couple strongly, and for small kF exclusively, to the optical
bond-stretching modes, with the main differences being
that in three dimensions the Kohn anomaly is weaker and
the DOS increases with hole doping like kF, the radius of
the average Fermi sphere. Since there are three bands and
two carbon atoms per cell, �kF=kBZ�

3 �x=3. For x � 0:03,
kF=kBZ is 0.22, which is like in MgB2. Because of the lack
of a metallic � band, diamond becomes an insulator once
x is below 1%–2%. We shall now substantiate this sce-
nario for the observed superconductivity in hole-doped
diamond by providing quantitative details, and we shall
also consider the possibility of superconductivity in hole-
doped Si and Ge. In particular, we shall present results of
2-1  2004 The American Physical Society
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density-functional [local-density approximation (LDA)]
calculations and estimate Tc using Eliashberg theory.

A substitutional boron impurity in diamond has an
acceptor level with binding energy 0.37 eV [14]. With
increased doping, the boron impurity band eventually
overlaps the diamond valence band, and the system be-
comes metallic at a boron concentration of 8 

1020 cm�3. Since this is 1 order of magnitude lower
than the doping at which superconductivity was observed
[1], we felt justified in using a virtual crystal approxima-
tion in which the carbon nuclei have charge 6 � x and the
crystal is neutral.

The valence bands were calculated with the scalar-
relativistic full-potential linear muffin-tin orbitals
method (LMTO) method [15], and the phonon dispersions
and the electron-phonon spectral function �2F were cal-
culated with the linear-response method [15]. Effects of
anharmonicity were considered in a second step. We used
a triple-� spd LMTO basis set and represented the charge
densities and potentials by spherical harmonics with l �
6 inside nonoverlapping muffin-tin spheres and by plane
waves with energies less than 400 Ry between the spheres.
The resulting band structure for undoped diamond agrees
with those of earlier LDA calculations. Because of the
smallness of kF, we needed to use a fine k-mesh chosen as
a 1=323 sublattice in reciprocal space. �2F is evaluated as
a weighted sum over linewidths of individual phonons,
and for this a fine, yet affordable, q mesh is needed. It was
chosen as a 1=83 sublattice in reciprocal space. The 

values obtained here are accurate when x * 0:05, whereas
Eq. (1), which we have now derived analytically also in
three dimensions, is more accurate for smaller dopings.
Since, even for 10% doping, we calculated an increase of
the lattice constant by less than a percent, we did use the
experimental lattice parameters for the undoped materi-
als in all subsequent calculations.

In Fig. 1 we show the top of the valence-band structure
calculated for 10% hole-doped diamond. For this unreal-
istically heavy doping, N reaches 75% of the �-band DOS
in MgB2. The electronic parameters may be found to-
gether with those for MgB2 in the first columns of Table I.
Because of the deviations from parabolicity seen in Fig. 1,
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FIG. 1 (color online). LDA band structure of diamond with
x � 0:1 holes=C (full lines). A frozen optical zone-center pho-
non with two bonds stretched and two contracted by u=

���
2

p

splits the bands by �Du (dotted lines). u � 0:05 �A.
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N decreases somewhat faster than x1=3. As is well known,
the LDA gap is too small, and this leads to a slight
underestimate of the valence-band masses and the DOS.
Nevertheless, properties derived from the total energy,
like phonon energies, are quite accurate.

For the displacement eu of a frozen, optical zone-
center phonon with two bonds stretched and two con-
tracted, say those in, respectively, the positive and nega-
tive z directions, the top of the valence band is deformed
as shown in Fig. 1: For small k there are two identical
bands, split in energy by �Du, and a band which does not
move with respect to the Fermi level. At � the corre-
sponding wave functions are those linear combinations of
the bond orbitals which have, respectively, �px � py�

���
2

p

and pz symmetry. The value of D given in Table I is seen
to be nearly twice as large as in MgB2. For pure diamond
it agrees with the accepted value [16], and it is seen to
decrease slightly with doping.

In Fig. 2 we show the phonon dispersions calculated in
the harmonic approximation for undoped and hole-doped
diamond. The dispersions for pure diamond, including
the slight upturn of the uppermost mode when moving
away from the zone center [17], are well reproduced, and
for the frequency 1332 cm�1 of the optical zone-center
modes we calculate !0 � 1292 cm�1. Previous LDA cal-
culations [18] obtained similar results. In the presence of
hole doping, the calculated dispersions of the optical
modes clearly exhibit softening near the zone center
and a three-dimensional Kohn anomaly around q � 2kF.

The softening of the zone-center phonons is �2=3�

instead of 
, as in the case of MgB2. This is most easily
seen by considering a frozen phonon calculation and
Fig. 1: The adiabatic redistribution of �1=3�2NDu elec-
trons from the upper third to the lower third of the
deformed valence band decreases the energy of each
electron by Du, and therefore perturbs the potential en-
ergy of the harmonic oscillator by ��1=3�2ND2u2. As a
consequence, �1=2�M!2 ��1=2�M!2

0��1=3�2ND2, and
by the use of Eq. (1) we get !2 �!2

0=�1	22
3
�. In

MgB2 no part of the � band is passive in the screening
of the phonon, so the factor 2=3 is missing. The value of 

deduced from the frequencies, ! and !0 � !�x � 0�, of
the optical zone-center modes calculated by linear re-
sponse is given in Table I �
!�. This 
! value is seen to
agree well with the value 
D obtained by the use of
Eq. (1). In order to separate the materials and dimensional
dependencies of 
, we express it in terms of a bare
coupling constant, 
0, and an enhancement due to the
phonon softening:


0 �
ND2

M!2
0

; 
�

0

1� 2 2
3
0

;
!2

!2
0

� 1� 2
2

3

0: (2)

The enhancement is weaker in three dimensions than in
two, where the reduction factor 2=3 is missing. As for the
materials dependence, the 
0 values given in Table I first
of all show that 10% doped diamond has the same
-2



TABLE I. N is in states=eV=spin=f:u: D is in eV= �A. ! is in cm�1. 
0 is the bare electron-phonon coupling constant defined in
Eq. (2). 
D and 
! are estimates of the coupling constant as obtained from, respectively, Eq. (1) and the softening of !. 
 is
obtained from the numerical linear-response calculation and includes all phonons and � electrons; for MgB2 it is 
�� [24]. a �
E0

F=Dt. 
a is 
 corrected for anharmonicity using Eq. (3). Tc is obtained from Eq. (4) using 
a, !a, and "� � 0:1.

N D ! 
0 
D 
! 
 a 
a Tc

MgB2 0.15 12.4 536 0.33 1.01 � � � 1.02 0.9 0.78 45
C 0.00 21.6 1292 0 0 0 0 0.0 0 0
3%C 0.07 21.1 1077 0.21 0.30 0.33 0.30 0.7 0.27 0.2
5%C 0.08 20.8 1027 0.25 0.37 0.44 0.36 0.9 0.33 2
10%C 0.11 20.4 957 0.32 0.57 0.62 0.56 1.3 0.54 25
Si 0.00 6.8 510 0 0 0 0 0.0 0 0
5%Si 0.17 6.3 453 0.13 0.16 0.20 0.30 1.4 0.30 0.3
10%Si 0.24 6.1 438 0.17 0.22 0.27 0.40 2.0 0.40 3
Ge 0.00 5.8 317 0 0 0 0 0.0 0 0
10%Ge 0.20 4.4 282 0.08 0.09 0.20 0.32 5.1 0.32 0.4
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0 � 1=3 as MgB2: The bare force constant, M!2
0, is 0.49

times its value in MgB2, N is 0.75, and D is 1.65. Because
of the difference in dimensionality, 
� 1=3

1�4=9 � 0:6 in

doped diamond, but 
� 1=3
1�2=3 � 1 in MgB2. With de-

creasing doping in diamond, N decreases roughly like
x1=3, D increases slightly, and M!2

0 is constant. As a
consequence, for 3% doping 
0 is only 0.21 and 
 is 0.30.

We can also calculate the electron-phonon spectral
function and 
 � 2

R
!�1�2F�!�d! numerically by

sampling over all phonon branches and energy bands.
The result shown in Fig. 3 confirms that only the optical
phonons interact with the holes: �2F vanishes for phonon
frequencies below that of the optical zone-center modes,
then jumps to a maximum, and finally falls. The decay
occurs more slowly than in MgB2 due to the increase of
dimensionality. The 
 values �
� obtained from this cal-
culation again agree well with those obtained from Eq. (1)
and from the phonon softening.

In MgB2 the role of anharmonicity of the optical
phonon modes with q < 2kF has been stressed [10]; it
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FIG. 2 (color online). Phonon dispersions calculated with the
linear-response method for diamond with x � 0, 1%, 5%, and
10% hole doping.
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hardens the phonon by about 20% and thus decreases 

from 1.0 to 
a � 0:78, as given in Table I. However, this
has recently been questioned [11]. While anharmonicity
may be crucial in MgB2 it has at most a noticeable effect
on the superconductivity in diamond at small dopings
(x < 3%): The anharmonicity appears in frozen phonon
calculations (see Fig. 1), because once the displacement u
exceeds EF=D, the lower band is full so that the screening
is lost [12]. In the expression for the perturbation of the
potential energy of the oscillator, u2 should now be sub-
stituted by �juj � EF=D�2��EF=D� juj�, provided that
we simplify the DOS shape by a square. It has been shown
that the most important anharmonic contribution to Tc is
the decrease of the first excitation energy [19]. By
first-order perturbation theory, this is simply
�1=3�2ND2t2�1 � erf�EF=Dt��, where t �

��������������
�h=M!

p
is the

classical turning point in the ground state. Introducing
again Eq. (1) we obtain the result


a



�
!2

!2
a
�

1

1 	 2�2=3�
�1 � erf�EF=Dt��
: (3)

For MgB2 the assumption of a square N�E� is good, but
due to the missing factor 2=3 and the presence of the �
band, �2=3� in Eq. (3) should be substituted by �1 �
N�=�N 	 2N���. For hole-doped diamond, N�E� has a
square-root shape, and this we crudely take into account
by substituting EF in Eq. (3) by E0

F � �2=3�EF. In Table I
we have included the ratio E0

F=Dt � a as well as the
results for 
a. We see that the effect of anharmonicity
may be important in MgB2 but merely noticeable in hole-
doped diamond [20].

For this type of superconductivity, which is character-
ized by an Eliashberg function with the shape exhibited
in Fig. 3, and which we can idealize by a ! function at the
frequency ! of the optical zone-boundary phonon, solu-
tion of the Eliashberg equations yields with high accuracy

Tc � ! exp
�

�1



1	
�"�

�
: (4)
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FIG. 3 (color online). The phonon density of states, F�!�, and
Eliashberg function, �2F�!�, calculated numerically by linear-
response considering all electrons and phonons.
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This is McMillan’s expression with all numerical factors,
which he obtained by fitting to F�!� of niobium, set
equal to unity. For the cases considered in this Letter, it
does not make much difference whether one uses
McMillan’s factors or unity inside the exponential, but
it is important that the prefactor is !, rather than
h!lni=1:2.

We can finally estimate Tc from Eq. (4) with the values
for 
a given in Table I and !a from Eq. (3). For the
Coulomb pseudopotential, the standard value "� � 0:1
was used in all cases. For MgB2 we neglected the� bands.
Considering the uncertainties in our calculation of 
 and
!, the uncertainty of "�, and the experimental estimation
of the doping level, we do find critical temperatures in
good agreement with present experimental knowledge.
We therefore believe to have substantiated our claim
that the superconductivity in hole-doped diamond is of
MgB2-type, but in three dimensions.

We repeated our calculations for hole-doped Si and Ge,
and include those results in Table I for which EF largely
exceeds the spin-orbit splitting, which we neglected.
Whereas hole-doped C shows superconductivity above
1 K for doping levels presently obtainable, Si and Ge
seem to need twice as high doping levels. The main reason
is that the deformation potential in Si and Ge is about
4 times smaller than in C, which is too small to take
advantage of having twice as large a DOS and a 3 times
smaller force constant. There is also a qualitative differ-
ence to diamond: For heavily doped Si and Ge, the holes
not only couple to the optical, but also to the acoustic
phonons. This is the reason why 
 exceeds 
D � 
!.

In conclusion, we have shown that the recently discov-
ered superconductivity in hole-doped diamond below 4 K
is of MgB2 type, but in three dimensions. This means that
the mechanism is coupling of a few holes at the top of the
� bonding valence band to the optical bond-stretching
zone-center phonons. The increase from two to three
dimensions limits the strong softening of the optical
modes mainly responsible for the high Tc in MgB2. On
the other hand, the deformation potentials in diamond are
237002
twice stronger than in MgB2. Kelvin-range superconduc-
tivity in Si and Ge would require hole-doping levels of
5%–10%. Finally, we have obtained simple analytical
expressions for MgB2-type superconductivity.

A purely electronic mechanism for the observed super-
conductivity was recently suggested [21], and after sub-
mission of the present manuscript two works similar to
ours appeared [22,23]. The latter used a supercell ap-
proach to simulate the boron doping and found an
electron-phonon coupling in very good agreement with
our results.

We are grateful to O. Dolgov, M. Cardona, G. B.
Bachelet, E. Cappelluti, and L. Pietronero for many in-
teresting discussions.
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