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Apparent Electron-Phonon Interaction in Strongly Correlated Systems
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We study the interaction of electrons with phonons in strongly correlated solids, having high-Tc
cuprates in mind. Using sum rules, we show that the apparent strength of this interaction strongly
depends on the property studied. If the solid has a small fraction (doping) � of charge carriers, the
influence of the interaction on the phonon self-energy is reduced by a factor �, while there is no
corresponding reduction of the coupling seen in the electron self-energy. This supports the interpre-
tation of recent photoemission experiments, assuming a strong coupling to phonons.
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There has been much interest in electron-phonon cou-
pling in high-Tc cuprates after photoemission spectros-
copy (PES) studies of Lanzara et al. [1] showed a strong
coupling to a mode at 70 meV. This was interpreted as a
coupling to a half-breathing phonon, where O atoms in
the CuO2 plane move towards Cu atoms. This interpreta-
tion is supported by the anomalous softening under dop-
ing [2–5] and large width [3] of this phonon. It is
intriguing, however, that a substantially larger apparent
coupling strength � was estimated from a kink in the PES
spectrum [1] than what is suggested from the phonon
width and softening [6]. Similar considerations apply to
the B1g phonon width [9] and the anomaly at 40 meVseen
in PES [10]. These estimates of � were based on theories
which assume noninteracting electrons. Using sum rules,
we show that for a strongly correlated system the apparent
� deduced from such theories should depend strongly on
the property studied. We consider a doped Mott (charge
transfer) insulator, such as a cuprate, which has a fraction
� carriers (where � typically is small). The influence of
the electron-phonon interaction on the phonon self-
energy, determining its width and softening, is then re-
duced by a factor of the order of � compared to a system
without electron-electron interaction. For the electron
self-energy, determining the photoemission spectrum,
there is no comparable reduction. This explains why the
� deduced from the phonon self-energy appears smaller
than the one deduced from PES, and it supports the
scenario that phonons give a large contribution to struc-
tures in PES. For similar reasons, there should be no
reduction �� in the phonon induced carrier-carrier in-
teraction. To address these issues, we present a method for
determining � in exact diagonalization approaches.

The electron-electron interaction can strongly reduce
the effects of the electron-phonon interaction on phonons
[11]. The electron density is rearranged in response to the
excitation of a phonon, and this rearrangement acts back
on the phonon, contributing to the width and energy shift
of the phonon. The response of the electrons depends on
electron hopping, which is hindered by interaction ef-
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fects. In particular, if the interaction is strong enough to
lead to a Mott insulator (for � � 0), the electron-phonon
contribution to the phonon width vanishes.

For cuprates, this can be studied in the t-J model [12],
which has one site per Cu atom. Each site is occupied by
either a Cu 3d hole or a Zhang-Rice singlet, composed of
a Cu 3d hole and an O 2p hole. The doping � gives the
fraction of singlets, which provide the charge carriers.
The Hamiltonian is given by

Ht�J � J
X
<i;j>

�
Si � Sj �

ninj
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�
� t

X
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�~cyi�~cj� � H:c:�;

(1)

where ~cyi� creates a d hole on site i if this site previously
had no hole. A hole can hop with the hopping integral t to
sites occupied by singlets and vice versa. The spins of the
3d holes have a Heisenberg interaction with the interac-
tion strength J. In the t-J model with phonons [13–18],
the phonons couple mainly to the on-site energies and
only weakly to the terms describing hopping and spin-
spin interaction [13,17]. In the following we only include
the coupling to the on-site term,

Hep �
1����
N

p
X
i;q

gq�ni � 1��bq � by�q�eiq�Ri ; (2)

where N is the number of sites, gq is a coupling constant,
ni measures the d hole occupation on the site at Ri, and bq
annihilates a phonon with a wave vector q.

The phonons only couple to sites with Zhang-Rice
singlets, i.e., sites with no d holes. The phonon self-energy
��q; !� can then be expressed in terms of the charge-
charge response function ��q; !�.

��q; !� �
�g2q=N���q; !�

1� �g2q=N���q; !�D0�q; !�
; (3)

where D0�q; !� is the free phonon Green’s function.
Khaliullin and Horsch [14] showed that there is a sum
rule
-1  2004 The American Physical Society



PRL 93, 237001 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
3 DECEMBER 2004
1

�N

X
q�0

Z 1

�1
jIm��q; !�jd! � 2��1� ��N: (4)

This result is a factor 2��1� �� times the result for non-
interacting electrons in a half-filled band. Since ��q; !�
becomes small for small �, the same is true for ��q; !�.
In this limit the denominator in Eq. (3) is not very
important, and the sum rule in Eq. (4) also applies
approximately to ��q; !�=g2q
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To understand the result in Eqs. (4) and (5), we notice
that the system can respond to the perturbation of a
phonon by transferring singlets to sites with Cu 3d holes.
If there are few singlets, i.e., � is small, the response of
the system is weak and the phonon self-energy is small.
Since typically �� 0:1, this drastically reduces the pho-
non softening and width. We observe that this is a direct
effect of the strong correlation and the assumption that
double occupancy can be neglected.

It is interesting to study PES and inverse PES (IPES) to
see if many-body effects also drastically change the
effects of the electron-phonon interaction in these cases.
These spectra are described by the spectral function
A�k; !� � ImG�k; !� i0��=�, where k is a momentum
and! a frequency.G�k; z� is the electron Green’s function

G�k; z� �
ak

z� "k � ��k; z�
; (6)

where ak is a weight, z is a complex number, and ��k; z�
is the electron self-energy. The z-independent part of � is
included in the energy "k, so that ��k; z� � bk=z for large
z. To determine bk, we expand the Green’s function in 1=z
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where h!nik �
R
!nA�k; !�d!=

R
A�k; !�d!. The coef-

ficient bk can then be expressed in terms of h!ik and
h!2ik. Using the analytical properties, we can relate bk to
a sum rule over Im��k; !� i0��. Since there are no
phonons in the ground state in the model (2) for � � 0,
we can easily calculate expectation values of powers of
Hep, needed to obtain h!nik. From this we deduce a sum
rule for the difference �ep between the self-energies with
and without electron-phonon interaction.
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2 � �g2; (8)

which is valid for � � 0. The integration only runs over
energies corresponding to the PES spectrum, since the
weight of the IPES spectrum is zero for � � 0. The same
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result is obtained for the absolute value of the lowest
order (in g2q) self-energy of noninteracting electrons.
While the effect of the electron-phonon coupling is
strongly reduced by the small doping for the phonon
self-energy, there is no such reduction for the electron
self-energy. Re�ep is related to Im�ep via a Hilbert
transform.

The sum rule in Eq. (8) can be understood if we notice
that a singlet with the wave vector k, created in PES, can
easily be scattered by phonons to other states k� q, since
only a fraction �1� �� of these are occupied by other
singlets. We therefore expect a strong electron-phonon
interaction in PES also for a finite but small �. As a
result, one would then expect that the electron-phonon
interaction appears to be a factor of 1=�c�� stronger in
Re��q; !� than for the phonon width 2 Im��q; !�, where
c� 2–4 depends on the assumptions about the ! depen-
dencies of Im� and Im�. Although the arguments above
show that the right hand side of the sum rule in Eq. (8)
should not go to 0 for � ! 0, the result is, nevertheless,
highly nontrivial. The right hand side is independent of k,
t, and J. It is also interesting that it remains proportional
to �g2 for large �g.

From these arguments it follows that the phonon in-
duced attractive carrier-carrier interaction should also be
effective, since for small � the carriers (singlets) can
scatter each other via phonons with few restrictions.
This may be helpful for superconductivity. In particular,
it should be possible to have a strong phonon induced
carrier-carrier interaction, without the corresponding
phonon going soft.

To illustrate these points, we study the t-J model with
phonons, using exact diagonalization. We consider a finite
cluster with 4� 3 sites, and include the entire breathing
phonon branch. The Hilbert space is limited by only
allowing for states which have a maximum of K phonons,
where typically K � 7. Ideally, we would calculate the
PES spectrum as a function of k. We would then expect to
see a kink in the dispersion at energies of the order of !ph

away from the Fermi energy, where !ph is a typical
phonon energy. For the small clusters which can be
studied in exact diagonalization, this approach is not
possible, due to the few k points available.

Instead we focus directly on the self-energy. The spec-
tral function A�k; !� is calculated using exact diagonal-
ization. The Green’s function is then obtained from a
Kramers-Kronig transformation. Finally, ��k; !� is ob-
tained by inverting Eq. (6). In a similar way we deter-
mine ��q; !� from the phonon spectral function. The
!-dependence of Re��q; !� then gives information about
the kink in PES and Im��q; !ph� gives the phonon width.

Because of the small size of the cluster there are few
many-electron states in the phonon energy range, which
makes it hard to extract phonon widths, even in the
approach above. The main points of this Letter can, how-
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ever, also be illustrated by using a larger phonon energy.
We have therefore increased the bare phonon energy to
!0

ph � 0:5 eV. This requires a corresponding increase in
the coupling constant. We have chosen a multiplying
factor of 3.4, which leads to an apparent coupling strength
to the phonons of the order seen experimentally [19]. We
have furthermore used the parameters t � 0:47 eV and
J=t � 0:3.

Figure 1 shows the frequency integrals of the imagi-
nary parts of the electron and phonon self-energies as a
function of the upper limit !. The limit ! ! 1 corre-
sponds to the sum rules (4) and (8). To obtain dimension-
less quantities, the coupling constants have been divided
out. The figure illustrates the large ratio, �1=�2��, of the
sum rules. The sum rule in Eq. (4) applies to an average
over q � 0 of �, but we found that it is also rather
accurate for �=g2q for an individual value of q, as is
illustrated in Fig. 1. The reason is that the denominator
in Eq. (3) is not very important for the coupling strengths
used here and that the sum rule for an individual q is not
very different from the average over q.

The coupling strength � is often determined from the
phonon width # � 2Im��q; !ph� [20] or its softening,
�!ph � Re��q; !ph�, using

�� �
#

2�!2
phN�0�

� �$
�!ph

!0
ph

; (9)

appropriate for noninteracting electrons. Here N�0� is the
electron density of states per spin and $� 1 depends on
the precise ! dependence of Im��q; !�. Figure 2 shows
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FIG. 1. Frequency integrals over the imaginary parts of the
phonon self-energy for q � �=a�1; 0� and the electron-phonon
contribution to the k-averaged electron self-energy. The results
are divided by the coupling constants and they were obtained
for a 4� 3 cluster with periodic boundary conditions. � was
calculated for � � 1=12 and �ep for � � 0. The self-energies
were given a 0.2 eV (FWHM) Lorentzian broadening. The
figure illustrates how these quantities converge to approxi-
mately 2� � 0:17 [Eq. (5)] and unity [Eq. (8)] for the phonon
and electron self-energy, respectively.
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the broadened Im��q; !�. The broadening (0.4 eV
FWHM) was chosen in such a way that the fine structures
due to the finite cluster size were removed and so that the
expected behavior Im��q; !� �! for small ! was ob-
tained. The phonon is softened to !ph � 0:4 eV, due to
the electron-phonon interaction. For this frequency we
obtain the FWHM of the phonon as # � 0:08 eV. This
result depends on the broadening of Im��q; !� and re-
sults differing by �30% could be obtained for other
reasonable broadenings. Based on the width of
Im��q; !�, we estimate N�0� � 0:5 states per eV and
spin and �� � 0:2. From the phonon softening
�!ph=!

0
ph � 0:2, we obtain a similar result for ��.

We emphasize the difference in this approach, using a
broadened �, from an approach where the phonon spec-
tral function is broadened until a smooth spectrum is
obtained. The latter approach leads to an additional width
of the peaks. For the present system, such a large broad-
ening would be required that the approach would not be
meaningful. The broadening of Im��q; !�, on the other
hand, does not generally add to the width of the phonon
spectral function, since it essentially only distributes the
contributions to Im��q; !� more uniformly in !.

We next consider the coupling strength seen in the
electron self-energy determining PES. We can determine
a �� as

�� � �
dRe�ep�!�

d!

��������!�0
�

1

�

Z
d!

Im�ep�!�

!2 : (10)

This leads to �� � 0:6, which is about a factor of 1=�c��
larger than �� with c � 4. As can be seen from Fig. 1
Im� is small for j!j<!ph � 0:4 eV. For this frequency
range we find that Re��k; !� � ���!.

To summarize, we have found that in strongly corre-
lated systems the apparent strength � of the electron-
phonon coupling crucially depends on the property of
interest. For the t-J model of a high-Tc cuprate with a
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FIG. 2. Im��q; !� of a 4� 3 cluster for q � �=a�1; 0� and
� � 1=12. The self-energy has been given a Lorentzian broad-
ening of 0.4 eV.
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fraction � carriers, sum rules for the imaginary parts of
the electron and phonon self-energies show a reduction by
a factor � for the phonon but not the electron case. This
suggests that the apparent � deduced from phonon widths
and softenings is reduced by such a factor, while there is
no reduction in the electron self-energy. This provides
support for phonons being essential for kinks seen in
photoemission. Similar arguments suggest that the pho-
non induced interaction between the carriers is not re-
duced by a factor of �, which may be of importance for
superconductivity.
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