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Kondo Resonance for Orbitally Degenerate Systems
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Formation of the Kondo state in the general two-band Anderson model has been investigated within
the numerical renormalization group calculations. The Abrikosov-Suhl resonance is essentially asym-
metric for the model with one electron per impurity (quarter filling case) in contrast with the one-band
case. An external magnetic (pseudomagnetic) field breaking spin (orbital) degeneracy leads to asym-
metric splitting and essential broadening of the many-body resonance. Unlike the standard Anderson
model, the ‘‘spin-up’’ Kondo peak is pinned against the Fermi level, but not suppressed by the magnetic
field.
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The Kondo problem is one of most fascinating and
important issues in condensed matter theory. It was
originally formulated to explain the resistivity minimum
in metallic alloys [1] due to the scattering of conduction
electrons by a magnetic impurity, and later generalized to
various cases. The Kondo effect turns out to be a key
phenomenon of the heavy fermion behavior [2], anoma-
lous electronic properties of metallic glasses at low tem-
peratures [3], quantum dots [4], and many other corre-
lated electron problems. One of the main results of this
theory is the formation of a resonance with small energy
scale (the so-called Kondo temperature TK) near the
Fermi energy due to the scattering of conduction electrons
by local quantum systems with internal degrees of free-
dom. Originally this resonance (usually called the Kondo,
or Abrikosov-Suhl resonance; for a review, see Ref. [2])
could be experimentally investigated only indirectly,
through the temperature dependence of thermodynamic
and transport properties of metals. However, novel tun-
neling spectroscopy, in particular, scanning tunneling
microscopy (STM), is now able to directly visualize the
Kondo resonance [5–7]. At the same time, theoretical
investigation of the spectral density for Kondo systems
is a much more complicated problem than the calculation
of thermodynamic properties. Indeed, in the latter case
exact analytical results can be derived by the Bethe
ansatz [8], whereas the electron density of states is con-
sidered mainly by some approximate methods or numeri-
cally; see, e.g., Refs. [9–16]. The splitting of the Kondo
resonance by external magnetic field was investigated by
Bethe ansatz for the s-d exchange model [17]. These
results can be used to verify different approximate
schemes demonstrating some difficulties, for example,
with the well-known noncrossing approximation (NCA)
[10].

Generally speaking, we have now a complete and sat-
isfactory theory of the Kondo resonance for the prototype
case of purely spin scattering. On the other hand, the
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information about the systems with orbital degrees of
freedom is still insufficient. A so-called ‘‘orbital Kondo
resonance’’ has been considered theoretically, for atomic
two-level systems in metallic glasses, for quadrupolar
degrees of freedom in some uranium-based compounds
[3], for high-temperature superconductors [18], and for
double quantum dot systems [19]. Recently the phase
diagram of the Anderson model with orbital degrees of
freedom has been investigated by the numerical renor-
malization group (NRG) method [20]. Spin (pseudospin)
susceptibility for the double quantum dot model has been
investigated by this technique in Ref. [19]. However,
electron spectral density has not been calculated. It is
worthwhile to note that investigation of dynamical prop-
erties for effective impurity models is of crucial impor-
tance for the dynamical mean-field theory (DMFT)
approach, in particular, to describe the metal-insulator
transition and related phenomena [21]. For one-band case
the NRG method was applied to DMFT problem in
Ref. [22].

Direct observation of the orbital Kondo resonance on
Cr(001) surface by the STM measurements [7], as well as
a relevance for multiple quantum dot systems [19], makes
the issue about the shape of the Kondo resonance and
about effects of ‘‘pseudomagnetic’’ field which breaks the
orbital degeneracy especially actual. Here we investigate
the problem of orbital Kondo resonance by the NRG
approach [23]. We shall demonstrate that in the ‘‘orbital’’
Kondo case the resonance has an essential asymmetry
with respect to the Fermi energy, in qualitative agreement
with the experimental observations [7].

We start from the two-band Anderson impurity model
with the spin and orbital rotationally invariant Hamil-
tonian [24]

H �
X
ka�
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y
ka�cka� � V�fya�cka� � cyka�fa��� �Himp;

(1)
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FIG. 1. The density of states for the half-filled case, "f � �3,
V � 0:2, U � 2, J � 0, h � 0 (solid line) and symmetric
splitting (only the spin-up DOS) in the magnetic field h �
0:006 (dotted line), h � 0:01 (dashed line), and h � 0:02
(dash-dotted line). Occupation number per orbital and spin
are shown in the left insert (total nf � 2). Density of states
at the Fermi level according to the Friedel sum rule (3) is
�f�0� � 10:13. Right insert shows the DOS in the vicinity of
the Fermi level.
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Here a; b � 1; 2 and � �"; # are orbital and spin indices,
correspondingly, cyka� (cka�) denote the creation (annihi-
lation) operators for a-orbital states with spin � and
energy "k (we take the rectangle band with half-width
D � 2), fya� (fa�) those for impurity states of a orbital
with spin � and energy "f , na� � fya�fa�, h is magnetic
field. Since the spin and orbital degrees of freedom are
symmetric in the Hamiltonian, h may be a pseudomag-
netic field (e.g., for the orbital Kondo effect on Cr(001)
surface where the potential of the atomic step edge breaks
the exact degeneracy between dxz and dyz states [7]). The
Coulomb interaction and exchange parameter at the im-
purity site are U and J, and two electron subsystems are
coupled via a hybridization parameter V. Note that in
solids the orbital moment conservation is not an exact
property and therefore some additional terms in the
Hamiltonian may appear [25]. However, we omit them
since the problem turns out to be numerically very cum-
bersome even for the rotationally invariant Hamiltonian.

To calculate the spectral properties of impurity we use
the NRG technique which is described in detail in
Refs. [2,11,23,26]. Here we emphasize the new aspects
for multiorbital Anderson model.

As usual, we start from the solution of the isolated
impurity problem. As an initial step of the RG procedure,
we add the first conduction electron site, diagonalize the
Hamiltonian matrix for this Hilbert space, and thus
obtain new eigenstates. Then such a procedure should be
repeated until reaching a fixed point. Dimension of the
Hilbert space within one NRG iteration increases by
factor 16 instead of 4 for the one-band case. By using
an appropriate symmetry of the problem we were able to
find the whole spectrum for the Hilbert space with the
dimensionality of 48 000 states, which gives a possibility
to keep at each step about 3000 states [27].

Because of the NRG discretization scheme, the elec-
tron spectral function

�f�!� � �
1

�
ImG�!� i0�; G�z� � hhfa�jf

y
a�iiz

is given by a set of �-functional peaks at the frequencies
!n. Standard NRG practice consists of the Gaussian
broadening of the spectral function on a logarithmic scale
[11]. Since the point ! � 0 plays a special role in such a
scheme, we used more conventional Gaussian broadening
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smearing being changed depending on the iteration num-
ber L, namely, bL�2 � bL=� (where the NRG cutoff
parameter � � 2 has been used).

The Kondo regime corresponds to the case where
j"f j * 2� [12], � � �V2� being the one-particle reso-
nance width for the localized electrons; � is the bare
density of states (DOS) of conduction electrons at EF.
The density of states for the half-filled case (nf � 2) and
for almost quarter-filled case (nf � 1) are shown in
Figs. 1 and 2, respectively. Although the Hund interaction
J was estimated to have considerable value [7], this
quantity is irrelevant for the quarter-filled case; our RG
calculations confirmed that J does not essentially influ-
ence the results (see insert in Fig. 2). The main difference
of the NRG results obtained here with those for the non-
degenerate Anderson model is that the Kondo peak is not
centered at the Fermi energy EF � 0. An explanation of
this deviation is given by the Friedel sum rule for the
phase shifts !l: 2�2l� 1�!l=� � nf [28], 2l� 1 being
the number of orbital channels and nf the total number of
localized electrons. It is important that due to locality of
the self-energy the value of �f�0� does not change in
comparison with the noninteracting model (U � 0) and
is equal to

�f�0� �
1

��
sin2

��nf
N

�
; (3)

where N is the degeneracy factor [29]. For the standard
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FIG. 3. The effect of the magnetic field on the density of
states for the same model parameters as in Fig. 2. The magnetic
field values are h � 0 (solid line), 0.006 (dashed line), 0.01
(dotted line), 0.016 (dash-dotted line). The left insert displays
the dependence of occupation numbers on the magnetic field;
the right one shows the result of the approximation (5) for "f �
�1, U � 1, J � 0, V � 0:56, h � 0 (solid) and h � 0:04
(dotted line), the smearing of the logarithm with � � 0:004
being introduced. The value of V is increased in comparison
with the finite-U case to obtain a comparable value of the
Kondo temperature.

FIG. 2. The density of states for the almost quarter-filled case
for "f ��1, U�2, J�0, V�0:35. Occupation number per
orbital and spin is 0.258 (total nf�1:032). Insert shows the
DOS in the vicinity of the Fermi level; the dashed line corre-
sponds to the case of nonzero exchange parameter J � 0:2.
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SU(2) Kondo model for S � 1=2, as well as for a degen-
erate half-filled model, the phase shift at EF is close to
�=2, which means the strongest possible scattering at the
top of the resonance peak. In this case the asymmetry of
the Kondo resonance with respect to EF should be very
weak even for the nonsymmetric Anderson model, in
agreement with recent computational results [16], and
with our Fig. 1. Thus the large value of electronic effective
mass and linear specific heat is owing to renormalization
of the residue of the electron Green’s function,

Z �

�
1�

@Re��E�
@E

jE�EF

�
�1
: (4)

On the other hand, for N > 2 and nf � 1, the top of the
f-electron peak shifts above EF [2]. In particular, in the
SU�N� Anderson model (or in the equivalent Coqublin-
Schrieffer model) with infinitely large N [9,10], the high
peak lies completely above the Fermi level, being shifted
by the value of the order of TK (note that in the limit N !
1 this is just a deltalike peak). NRG calculations for
SU�N� Anderson model [11] give qualitatively similar
results. However, the values of �f�0� calculated in
Ref. [11] turn out to be by about 30% smaller than given
by Eq. (3), probably, due to insufficient accuracy. Our
results for double-degenerate model give �f�0� in the
perfect agreement with the Friedel sum rule (see captions
to Fig. 1).

The NRG calculations with the external magnetic field
h were also performed. Since we are interested only in a
small energy region, shortcomings of the NRG scheme,
which occur in the presence of magnetic field at large
excitation energies ! [30], are not important here. There
are several qualitatively different regimes of magnetic
splitting in the double-degenerate Anderson model:
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(i) A half-filled case where nf � 2 due to electron-hole
symmetry even in the presence of external magnetic field.
The usual symmetrical splitting takes place and the
Kondo peaks become low and broad (Fig. 1), similar to
the behavior in the nondegenerate symmetric Anderson
model [16].

(ii) A nearly quarter-filled case: nf � 1. The splitting
of the Kondo peak is asymmetric. One can see from Fig. 3
that the upper ‘‘spin-down’’ peak becomes low and broad,
as well as in the symmetric case. At the same time, the
lower ‘‘spin-up’’ peak is not suppressed (as in the stan-
dard Kondo model), but tends to the Fermi level and
becomes higher (however, the situation changes with
decreasing V: the height and area of spin-up peak de-
creases considerably in strong magnetic field). The den-
sity of states at EF remains high up to very strong fields,
so that the partial f-occupation numbers depend strongly
on h. For very strong fields, the peak corresponding to
spin-down states is completely suppressed (nfa# ! 0), and
only orbital Kondo resonance between spin-up states
survives since nfa" ! 1=2, in contrast with the case (i)
where nfa" ! 1.

(iii) The intermediate valence regime (nf is essentially
noninteger). Instead of the three-peak structure charac-
teristic for the Kondo regime, we have one peak which is
split in magnetic field (Fig. 4).

The NRG method can provide detailed information
about the Kondo resonance in the two-band Anderson
model. For a larger number of orbitals, numerical calcu-
lations become impractical for a reliable treatment of the
3-3



FIG. 4. The effect of the magnetic field on the density of
states for "f � �2, U � 2, J � 0, V � 0:2. The magnetic field
values are h � 0 (solid line), 0.08 (dashed line), 0.32 (dotted
line). The insert shows the spin-occupation number as function
of magnetic fields.
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Kondo problem. To understand qualitatively the behavior
of the multiband Kondo system in magnetic field, we
consider a simple degenerate Anderson model with U �
1 where the peak lies also above the Fermi level [10]. The
Hamiltonian reads

H �
X
km

tkc
y
kmckm �

X
m

�"f � hm�f
y
mfm � V

X
km

�cykmfm

� H:c:�;

where fym � jmih0j are the Hubbard’s X operators; the
model (1) corresponds to m � a� and ha" � h=2, ha# �
�h=2. Using the second-order perturbation theory for X
operators [31] one can obtain (cf. also Refs. [9,10])

hhfmjf
y
miiE � hn0 � nmi

�
E� "f � hm

� �V2
X
m0�m

ln
D

E� hm � hm0

�
�1
: (5)

This very simple approximation gives reasonable quali-
tative agreement with the numerically accurate NRG
results (see right insert in Fig. 3). It can be used for
interpretations of the computational results. For example,
according to Eq. (5), the spin-up peak does not intersect
the Fermi level with increasing magnetic field (at least, at
not too small V). Indeed, the logarithmic divergence of
the self energy exists in our orbitally-degenerate model,
the contribution from the transitions between the degen-
erate states being not cut at h.

To conclude, we have considered peculiarities of the
Kondo resonance in the orbital-degenerate case by a
numerical renormalization group technique. A possibility
to calculate the spectral properties for the degenerate
Anderson impurity model is demonstrated, which gives
a chance to extend the applicability region of the NRG
scheme in the DMFT approach beyond the one-band case.
Our version of the NRG can describe accurately the case
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where the Kondo peak is shifted from the Fermi energy,
which is a generic case of the multiband impurity model.
The new features of the orbital-degenerate model are
related with the fact that the Kondo resonance is not
suppressed by external magnetic (or pseudomagnetic)
field, its splitting being essentially asymmetric.
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