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Stopping Light in a Waveguide with an All-Optical Analog
of Electromagnetically Induced Transparency
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We introduce a new all-optical mechanism that can compress the bandwidth of light pulses to
absolute zero, and bring them to a complete stop. The mechanism can be realized in a system consisting
of a waveguide side coupled to tunable resonators, which generates a photonic band structure that
represents a classical analogue of the electromagnetically induced transparency. The same system can
also achieve a time-reversal operation. We demonstrate the operation of such a system by finite-
difference time-domain simulations of an implementation in photonic crystals.
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FIG. 1. Schematic of a tunable waveguide system used to stop
light. The disks and block represent the cavities and the
waveguide. The arrows indicate available evanescent coupling
pathways between the cavities and the waveguide. The system
consists of a periodic array of two side cavities coupled to the
waveguide, with a coupling rate of 1=�. The distance between
the nearest neighbor side cavities is l1, and the length of the
unit cell is l � l1 � l2.
The ability to stop a light pulse, while completely
preserving quantum coherent information encoded in
the pulse, has profound implications for classical and
quantum information processing [1–5]. Up to now, most
experimental demonstrations of stopping light rely upon
the use of electromagnetic induced transparency (EIT). In
these experiments, a light pulse is stopped by completely
or partially transferring the optical information to co-
herent electronic states [6–8]. The use of electronic states,
however, severely limits applications, due to the stringent
conditions required to maintain electronic coherence.

Since the EIT spectrum results from the interference of
resonant pathways, it has been recently recognized that
similar interference effects also occur in classical sys-
tems such as plasma and electric circuits [9,10]. In parti-
cular, EIT-like transmission spectra have been observed
in static optical resonators [11–13]. To stop light, however,
a static resonator system alone is not sufficient —any such
resonator system is fundamentally limited by the delay-
bandwidth constraint [14,15] and cannot bring the group
velocity of an optical pulse to zero [5,16]. Critically, one
needs to develop the correct dynamic process that allows
the bandwidth of the pulse to be adiabatically compressed
to zero [5,16]. Yanik and Fan recently showed one such dy-
namic process based upon a band anticrossing mechanism
in coupled resonator optical waveguides (CROW) [5].

In this Letter, we theoretically and numerically dem-
onstrate a new and optimal mechanism for stopping light,
by constructing a classical analogue of EIT consisting of a
waveguide side coupled to optical resonators, and by
modulating the refractive index of the resonators to dy-
namically compress photon bandwidth. We prove that the
group velocity of light can be reduced to absolute zero,
with only two resonators per unit cell, due to the presence
of EIT-like interference effects. We also show that in such
a system, the adiabatic bandwidth compression process is
protected by the presence of a large photonic band gap,
which makes a fast compression process possible.

We consider a translationally invariant system (Fig. 1),
in which a waveguide is coupled to two side cavities in
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each unit cell. The cavities have resonant frequencies !A
and !B, respectively. Initially, we assume that the cav-
ities couple to the waveguide with equal rates of 1=�, and
we ignore the direct coupling between the side cavities.
The transmission matrix for a waveguide side coupled to
a single resonator with resonance frequency !i can be
calculated using the Green’s function method [17] as

Tci �
1� j=�!�!i�� j=�!�!i��
�j=�!�!i�� 1� j=�!�!i��

� �
: (1)

The transmission matrix through an entire unit cell in
Fig. 1 can then be determined as

T � Tc1Tl1Tc2Tl2 ; (2)

where

Tli �
e�j�li 0
0 ej�li

� �

is the transmission matrix for a waveguide section of
length li. Here, � is the wave vector of the waveguide at
a given frequency !.

Since det�T� � 1, the eigenvalues of T can be repre-
sented as eikl; e�ikl, where l � l1 � l2 is the length of the
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unit cell, and k (when it is real) corresponds to the Bloch
wave vector of the entire system. Therefore, we obtain the
band diagram of the system as

1

2
Tr�T� � cos�kl� � f�!�

� cos��l� �
C�

�!�!A�
�

C�

�!�!B�
; (3)

where C� � 2 sin��l1� sin��l2�
�!A�!B��2

� sin��l�
� . In the frequency

range where jf�!�j< 1, the system supports propagating
modes, while jf�!�j> 1 corresponds to the frequency
ranges of the photonic band gaps. For a large frequency
separation � � j!A �!Bj�, the band diagram is shown
in Fig. 2(a). In the vicinity of the resonances, the system
supports three photonic bands, with two gaps occurring
around !A and !B. Such a band diagram is similar to that
of EIT systems [18].

The width of the middle band depends strongly on the
resonant frequencies !A;!B. Importantly, when the reso-
nant frequencies satisfy the following conditions, the
width of the middle band becomes zero [Fig. 2(b)], with
the frequency of the entire band pinned at !A:

C��!A��
2sin	��!A�l1
sin	��!A�l2


�!A�!B��
2 �

sin	��!A�l

�

!0;

(4)
��������cos	��!A�l
 �

C��!A�

!A �!B

��������>1: (5)

(Alternatively, the band can be pinned at !B with a
similar condition.) To prove these conditions, we note
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FIG. 2. The photonic bands of the system of Fig. 1 for three
different choices of � � j!A �!Bj�. (a) � � 3:277. The
bandwidth of the middle band is large. (b) �  0:341. The
bandwidth goes to zero. (c) � � 0. The slope of the band flips
its sign. The cavity resonance frequencies are given by !A;B �

!c ��=2� where !c � 0:357�2�c=a� and 1=� � !c=235:8.
Here, a is a length unit. The distances between the cavities
are ‘1 � 2a and ‘ � 8a. The waveguide has a dispersion of
� � 	0:278� 0:327�!a=2�c� 2:382�
=a, which is actually a
fit for the photonic crystal waveguide in Fig. 3.
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that f�!� in Eq. (3) has a singularity at ! � !A. The
frequency width of this singularity is controlled by
C��!A�, and approaches zero when Eq. (4) is satisfied.
Satisfying Eq. (5), on the other hand, ensures that the
solutions to jf�!�j � 1 in the vicinity of !A occurs on the
same branch of the singularity 1=�!�!A�, and thus
forms a continuous band. When both conditions are sat-
isfied, as the width of the singularity approaches zero, a
band [the middle band in Fig. 2(b)] always exists in the
vicinity of !A, and the width of this middle band van-
ishes. Upon further decrease of �, the group velocity of
the band changes sign [Fig. 2(c)]. Furthermore, the sign
of the group velocity for the middle band can be designed
by choosing appropriate l1, l2.

In the presence of direct coupling due to photon tun-
neling between the two cavities in the same unit cell, one
could still describe the system in terms of two resonant
eigenstates within each unit cell. The dispersion can be
expressed in the same functional form as of Eq. (3) with
!A and !B in the denominator replaced by the frequen-
cies of the eigenstates. And bandwidth compression to
zero still occurs when conditions analogous to that of
Eqs. (4) and (5) are satisfied. This is also supported by
our numerical observations that the sign of the band flips.
In addition, in photonic crystals, the direct coupling
constant decreases exponentially with the distance be-
tween the cavities, and can therefore be reduced to any
desired value in our system since the cavities are not
across each other along the waveguide. Our simulations
also indicate that even in the presence of loss, extremely
flat band is obtainable, and the sign of the band still flips,
which is consistent with our previous finding in a differ-
ent system [5]. In general, it appears that the group
velocity becomes independent of the loss when the losses
of different subsystems are matched [5,16].

The system presented above satisfies the general crite-
rion required to stop light [5]: the system is translation-
ally invariant, and the width of one of the bands can be
reversibly compressed to zero. Thus, the dynamic process
in [5] can also be applied here to stop a light pulse. We
start with large �, such that the middle band has a large
bandwidth, and !A, !B are chosen such that this band can
accommodate the incoming pulse, with each spectral
component of the pulse occupying a unique wave vector
[Fig. 2(a)]. After the pulse is completely in the system, we
vary !A and !B until the bandwidth of the band is
reduced to zero [Fig. 2(b)], at a rate slow compared
with the frequency separation of the middle band from
other bands.

We implement the system presented above in a photonic
crystal of a square lattice of dielectric rods �n � 3:5� with
a radius of 0:2a (a is the lattice constant) embedded in air
�n � 1� (Fig. 3). The photonic crystal possesses a band
gap for TM modes with electric field parallel to the rod
axis. A single-mode waveguide is generated by removing
one row of rods along the pulse propagation direction.
Decreasing the radius of a rod to 0:1a and the dielectric
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FIG. 3 (color). Propagation of an optical pulse through a
waveguide-resonator complex in a photonic crystal system as
the resonant frequencies of the cavities are varied. The pho-
tonic crystal consists of 100 cavity pairs. Fragments of the
photonic crystal are shown in (b). The three fragments corre-
spond to unit cells 12–13, 55–56, and 97–98. The dots indicate
the positions of the dielectric rods. The black dots represent the
cavities. (a) The dashed green and black lines represent the
variation of !A and !B as a function of time, respectively. The
blue solid line is the intensity of the incident pulse as recorded
at the beginning of the waveguide. The red dashed and solid
lines represent the intensity at the end of the waveguide, in the
absence and the presence of modulation, respectively.
(b) Snapshots of the electric field distributions in the photonic
crystal at the indicated times. Red and blue represent large
positive and negative electric fields, respectively. The same
color scale is used for all the panels.

PRL 93, 233903 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
3 DECEMBER 2004
constant to n � 2:24 generates a single-mode cavity with
resonance frequency at !c � 0:357�2�c=a�. The nearest
neighbor cavities are separated by a distance of ‘1 � 2a
along the propagation direction, and the unit cell period-
icity is ‘ � 8a. The waveguide-cavity coupling occurs
through a barrier of one rod, with a coupling rate of 1=
��!c=235:8. The resonant frequencies of the cavities are
tuned by refractive index modulation of the cavity rods.

We simulate the entire process of stopping light for
N � 100 pairs of cavities with the finite-difference-time-
domain (FDTD) method [19], which solves Maxwell’s
equations without approximation. The computational cell
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is truncated by uniaxial perfectly matched boundary
layers [19]. Furthermore, we have used a large enough
computational cell such that the result is free of any
parasitic reflection from the right end of the computa-
tional boundary. The dynamic process for stopping light
is shown in Fig. 3(a). We generate a Gaussian pulse in the
waveguide (the process is independent of the pulse shape).
The excitation reaches its peak at t � 0:8tpass, where tpass
is the traversal time of the pulse through the unmodulated
waveguide. During the pulse generation, the cavities have
a large frequency separation. The field is concentrated in
both the waveguide and the cavities [Fig. 3(b), t �
1:0tpass], and the pulse propagates at a high speed of vg �

0:082 c. After the pulse is generated, we gradually reduce
the frequency separation � to zero. During this process,
the speed of light is first reduced to zero, and then its sign
changes and the pulse starts propagating backwards
slowly. (The sequence of the corresponding band struc-
ture is shown in Fig. 2.) As the bandwidth of the pulse is
reduced, the field concentrates in the cavities [Fig. 3(b),
t � 5:2tpass]. We use an index modulation with a form of
exp	�t2=�2mod
, where �mod � 5�. However, almost any
modulation pattern and rate would satisfy adiabaticity in
this system. When zero group velocity is reached, the
photon pulse can be kept in the system as a stationary
waveform for any time duration. In this simulation, we
store the pulse for a time delay of 5:0tpass, and then release
the pulse by repeating the same index modulation in
reverse [Fig. 3(b), t � 6:3tpass]. The pulse intensity as a
function of time at the right end of the waveguide is
plotted in Fig. 3(a), and shows the same temporal shape
as both the pulse that propagates through the unmodu-
lated system, and the initial pulse recorded at the left end
of the waveguide. Thus, the pulse is perfectly recovered
without distortion after the intended delay. In the FDTD
simulations, we choose an index modulation of 1% and a
modulation rate of 1:1 THz only to make the total simu-
lation time feasible. The use of such extremely fast modu-
lation demonstrates that the adiabaticity requirement in
this system can be achieved easily. The simulation dem-
onstrates a group velocity reduction to zero for a 4 ps
pulse at the 1:55 �m wavelength.

Unlike the previously proposed scheme [5] based upon
the band anticrossing mechanism, the structure proposed
here has several important advantages, and, in fact, repre-
sents an optimal implementation of the general criterion.

(a) Only two resonators per unit cell are needed for the
bandwidth to be compressed to absolute zero.

(b) The same system can be used for time reversal. The
slope of the band can change sign as one modulates the
resonant frequencies, which results in a time-reversal
operation on the pulse [20].

(c) This system can operate with fast modulation rates
while maintaining adiabaticity, which enables the use of
the shortest waveguide. The total length of the waveguide
L is determined by the initial bandwidth of the pulse,
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which sets the maximum speed in the waveguide vg0, and
by the duration of the modulation �mod, which sets the
distance that the pulse travels before it is stopped (i.e.,
L� vg0�pulse � vg0�mod, where �pulse is the length of the
pulse). Because of the delay-bandwidth product, vg0�pulse
is a constant independent of the signal bandwidth �!, and
the length of the system can thus be estimated as L�
�10� �!�mod�l. In this system, the gaps surrounding the
middle band have sizes on the order of the cavity-
waveguide coupling rate 1=�, and are approximately in-
dependent of the slope of the middle band (Fig. 2). Thus,
by increasing the waveguide coupling rate of the cavity,
this gap can be made large, which enables the use of fast
modulation while satisfying adiabaticity [5] and signifi-
cantly reduces the length requirement of the structure. To
accomplish the entire process of stopping and recovering
a 100 ps pulse, for example, a waveguide with a length
less than 30 microcavities modulated at a maximum
speed of 20 GHz is sufficient.

(d) This system can compress the largest possible pulse
bandwidth for a given refractive index modulation
strength �n. For a resonance with frequency !, the
largest frequency shift possible for a given index modu-
lation is about !�n=n. Therefore the largest compressible
system bandwidth is approximately [5]

�! ’ !�n=n; (6)

which sets the largest bandwidth of a pulse that can be
stopped. The introduced system can achieve this optimal
utilization of the system bandwidth. The dispersion over
most of the bandwidth is small compared with a typical
CROW band due to the existence of long-range through-
waveguide coupling between the cavities. Such a reduc-
tion in dispersion is particularly prominent when the
bandwidth is smaller than 1=�. In the band structure of
Fig. 2(a), since we used large index shifts to make FDTD
simulations feasible, the band exhibits large dispersion. In
practice, by operating in a regime where �n � 1=�!c,
the dispersion over most of the band is practically negli-
gible. Furthermore, all dispersive effects scale with the
second or higher orders of the system bandwidth, while
the pulse delay ( � 1=vg) scales inversely with the system
bandwidth. The dispersive effects integrated over time
approach zero in the limit of the vanishing bandwidth. In
this system, the presence of a zero-width band thus sig-
nificantly reduces the effects of dispersion and also results
in a more efficient utilization of the system bandwidth.

The all-optical EIT-like system represents a dramatic
improvement over the atomic-electronic schemes for
stopping light. For a small refractive index shift of
�n=n � 10�4 achievable in practical optoelectronic de-
vices [21], and assuming a carrier frequency of approxi-
mately 200 THz, as used in optical communications, the
achievable bandwidths are on the order of 20 GHz, which
is comparable to the bandwidth of a single wavelength
channel in high-speed optical systems. In comparison,
233903
the atomic stop light schemes have experimentally dem-
onstrated bandwidths less than 100 kHz [7,8,22,23]. The
all-optical storage times are limited only by the cavity
lifetimes, which are approaching millisecond time scales
[24,25]. The on-chip and room temperature operation of
all-optical schemes may thus enable completely new clas-
sical and quantum information processing capabilities.
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