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A New Geometric Invariant on Initial Data for the Einstein Equations
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For a given asymptotically flat initial data set for Einstein equations a new geometric invariant is
constructed. This invariant measures the departure of the data set from the stationary regime; it
vanishes if and only if the data are stationary. In vacuum, it can be interpreted as a measure of the total
amount of radiation contained in the data.
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Introduction.—The mass of an asymptotically flat data
for Einstein equations measures the total amount of en-
ergy contained in the spacetime. The mass is zero if and
only if the spacetime is flat. However, the energy can be in
different forms: it can be in a stationary regime or in a
dynamic one. This difference is, of course, physically
important: gravitational radiation will be present only
in the second case. The purpose of this Letter is to con-
struct a new quantity that can measure how far the data
are from the stationary regime. In other words, this quan-
tity measures how dynamic the data are, and it will be
zero if and only if the data are stationary. In vacuum, the
dynamic is produced only by the gravitational field, then,
in this case, the quantity can be interpreted as a measure
of the total amount of radiation contained in the data.

The construction is based on a new definition of ap-
proximate symmetries. An approximate symmetry satis-
fies an equation that always has a solution for a generic
spacetime and the solution coincides with the Killing
vectors when the spacetime admits them. The new quan-
tity is related to the approximate timelike translation.

There are many physical situations which are dynamic
but nevertheless are expected to be described by data
which are ‘‘as close to stationary data as possible’’, this
invariant provides a precise meaning of this idea. An
important example is the quasicircular orbit for binary
black holes (see [1] and references therein). The invariant
constructed here will provide a completely different way
of finding this class of data and hopefully will help to
solve the discrepancies between the different current
approaches.

Symmetries, approximate symmetries, and the con-
straint map.—Let S be a 3-dimensional manifold, and
let M2;S2;X;C be the spaces of Riemannian metrics,
symmetric 2-tensors, vectors, and scalar functions on S
respectively. Let hab 2 M2, and Kab 2 S2. The con-
straint map �:M2 � S2 ! C�X is defined as follows

�
hab
Kab

� �
�

R� K2 � KabK
ab

�DbKab �DaK

� �
(1)

where Da is the covariant derivative with respect to hab,
R � habRab, Rab is the Ricci tensor of hab, K � habKab,
and a; b; c::: denote abstract indices; they are moved with
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the metric hab and its inverse hab. The set �S; hab; Kab� is
called a vacuum initial data set for Einstein equations if
��hab; Kab� � 0 on S.

We can compute the linearization of � evaluated at
�hab; Kab�

D�
�ab

Qab

� �
�

DaDb�ab � Rab�ab � ���H
�DbQab �DaQ� Fa

� �
(2)

and its formal adjoint

D�	 �
Xa

� �
�

DaDb�� �Rab ���hab �Hab

D�aXb� �DcXchab � Fab

� �
(3)

where � � �abhab, Q � Qabhab and H; Hab, Fa, and Fab
vanished when Kab � 0 (since in this article we will only
consider the time-symmetric case, the explicit expression
of these quantities will not be needed).

The constraint map (1) is important not only because it
characterizes the initial data for Einstein equations, but it
also gives the Hamiltonian of the theory (see [2] and also
[3,4]). In particular, the adjoint map (3) gives the right
hand side of the evolution equations in the Hamiltonian
formulation (see [5] and references therein). Moreover,
D�	 has a remarkably property [6]: the elements of the
kernel of D�	 are the symmetries of the spacetime de-
termined by the initial data �S; hab; Kab�. That is, if
��; Xa� satisfies D�	��; Xa� � 0 then the spacetime will
have a Killing vector �, and ��; Xa� are the projections of
� normal and tangential to the spacelike hypersurface S,
respectively.

Motivated by this correspondence between the kernel
of D�	 and symmetries, we introduce the concept of
approximate symmetries. We will make use of the follow-
ing related operator introduced by Bartnik [7]

P
�cd

qpcd

� �
� D�

�cd

�Dpqpcd

� �
(4)

and its adjoint

P
�
Xa

� �



1 0
0 Dp

� �
�D�	 �

Xa

� �
; (5)

where the dot denotes matrix product. We say that ��;Xa�
is an approximate symmetry if it satisfies the equation
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P P 	��;Xa� � 0 (6)

and has the falloff behavior at infinity of the Killing
vectors in flat spacetime. Equation (6) is solved for a
given �hab; Kab�. Note that although the composition
D�D�	 is formally well defined, there is a mismatch
in the units in the domains and ranges of these operators;
that is why we use P instead of D� in Eq. (6).

This definition will be meaningful if: (a) Every sym-
metry is also an approximate symmetry. (b) For generic
data which admit no symmetry there exist always ap-
proximate symmetries. (c) We can uniquely associate
each approximate symmetry with a symmetry in flat
space, that is, we have approximate time translation,
approximate boost, etc. Since every symmetry satisfies
D�	��;Xa� � 0, (a) trivially follows. In the next section
we will prove that (b-c) are true for time-symmetric
initial data. In order to simplify the analysis in this
Letter we will assume that Kab � 0 and Xa ! 0 at infin-
ity; that is, we are only going to consider time trans-
lations and boosts (in the flat case we have four solutions).
This is an important special case since it includes all the
relevant features and difficulties of the equation. The
general case will be studied in a subsequent article.

Equation (6) can be derived from a variational princi-
ple, it is the Euler-Lagrange equation of the following
functional

J��; Xa� �
Z
S
P 	��; Xa� � P 	��;Xa�d�; (7)

where d� is the volume element with respect to hab. For a
symmetry we have J � 0, for an approximate symmetry
J � 0. If J, evaluated at an approximate symmetry, is
finite, we obtain new invariants for the data, which
measure how far the approximate symmetry is from a
symmetry. This will be the case for the approximate
boosts. However, it turns out that for the approximate
timelike translation, J diverges. This is because the ap-
proximate timelike translation grows like r at infinity and
not like a constant as the timelike translation. The new
invariant (which will be denoted by �) is precisely the
coefficient of r in this expansion.

The variational principle (7) is a generalization (which
includes the lapse function � and it is of fourth order) of a
variational principle for Xa studied in [8], which is known
as the minimal distortion gauge (see also the interesting
discussion in [9]). Finally, we want to point out that the
operators D� and D�	 have been recently used to con-
struct new kinds of solutions for the constraint equations
[10–13].

The time-symmetric case.—If Kab � 0 and Xa � o�1�
then, contracting with ��;Xa� Eq. (6), and integrating by
parts, one concludes that D�aXb� � 0. Hence Xa is a
Killing vector of hab. But since there are no Killing
vectors which go to zero at infinity (see [14]), we have
Xa � 0. Then, in this case, the operators (4), (5) reduce to

P ��ab� � DaDb�ab � Rab�ab � ��; (8)
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P 	���ab � DaDb�� �Rab ���hab: (9)

Using that DaP 	���ab � ��DbR=2 and habP 	���ab �
�2��� �R we obtain

PP 	��� � 2����DaDb�Rab � �RabRab

�
1

2
��R� 2R���

3

2
Da�DaR (10)

When R � 0 the last three terms in (10) vanish and the
operator PP 	 has a very simple expression. For an arbi-
trary domain 
 
 S the boundary term is given byZ


�abP 	���ab d� �

Z


P ��ab��d�

�
I
@


��Da�� �Da�

� �abDb�� �Db�ab�na ds; (11)

where ds is the surface element with respect to hab, and
na is the unit normal of @
 pointing in the outward
direction.

The falloff conditions on the fields can be conveniently
written in terms of weighted Sobolev spaces Hs

�, where s
is a non-negative integer and � is a real number (for [15–
17] and references therein, we will use the index notation
of [15]). We say that � 2 H1

� if � 2 Hs
� for all s. The

functions in H1
� are smooth in R3 and have the falloff at

infinity @l� � o�r��jlj�.
For simplicity, we have not included matter fields in the

constraint map (1). But then, if the metric is static and the
topology of the data is R3 it should be flat. In order to have
nonflat, vacuum, static metrics (i.e., Schwarzschild) we
will allow S to have n asymptotic ends, that is, for some
compact set 
 we have that S n
 �

Pn
k�1 Sk, where Sk

are open sets diffeomorphic to the complement of a
closed ball in R3. Each set Sk is called an end. We will
also assume that �S; hab� is asymptotically flat: at each
end, Sk, there exists a coordinate system xj

�k� such that we
have in these coordinates

hij � $ij 2 H1
% ; % � �1=2 (12)

where $ij denotes the flat metric and i; j � � � , which take
values 1, 2, 3 denote the coordinates indices. We will
smoothly extend the coordinate system xj

�k� to be zero in
S n Sk.

We say that � is exceptional if � is a nonpositive
integer, and we say that � is nonexceptional if it is not
exceptional. The manifold �S; hab� will be called static if
there exists a function & 2 H4

1=2 such that P 	�&�ab � 0.
Note that in this definition we allow & to have zeros (hori-
zons) on S, as, for example, in Schwarzschild initial data.

We are interested in the kernel of PP 	 in H4
�. Define

N��� � dimker�PP 	:H4
� ! H0

��4�: (13)

The main result is given by the following theorem.
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Theorem 1: Let �S; hab� be a complete, smooth, asymp-
totically flat, Riemannian manifold, with n asymptotic
ends. Assume that � 2 H4

� satisfies

P P 	� � 0: (14)

Then, � 2 H1
� . Moreover, assume that � is nonexcep-

tional, then, we have the following:
(i) If � � 0 then N��� � 0.
(ii) If 0<� � 1=2 then N��� � 1, and N��� � 1 if

and only if �S; hab� is static. In this case we have R � 0
and the unique static solution &, P 	& � 0, has at each
end, Sk, the following falloff

&� &�k�
0 � o�r%� @l& � o�r%�jlj� (15)

where &�k�
0 � 0 is a constant and % is given by (12).

(iii) If 1<�< 2 then N��� � 4n. At each end we have
the following four linear independent solutions of
Eq. (14)

)�k� � ��k�r�k� � )̂�k�; �j
�k� � xj

�k� � �̂j
�k� (16)

with )̂�k�; �̂
j
�k� 2 H4

1=2. Where ��k� are constant and ��k� �

0 for some k if and only if �S; hab� is static.
(iv) In the particular case S � R3 (which implies n �

1), we obtain more information:
(ii0) If 0<�< 1 then N��� � 1 and N��� � 1 if and

only if �S; hab� is static and hence flat.
(iii0) If 1<�< 2 then N��� � 4.
Proof: The differential operator PP 	 is an elliptic

operator of fourth order with smooth coefficients. Using
the decay assumption on the metric (12) one can easily
check that PP 	 is asymptotically homogeneous of degree
m with m � 4 (for the definition of this concept see for
example [16]—this is the standard assumption on the
coefficients for elliptic operator on weighted Sobolev
spaces—see also [17]). Then, by the weighted Sobolev
estimate [17], it follows that � 2 Hs

� for every s.
(i)–(ii).We use Eq. (11) with �ab � P 	���ab and 
 � S

to obtainZ
S
P 	���abP 	���abd�h �

I
@S
Banads; (17)

with

Ba ��2�Da��� 2��Da��P 	���abD
b��

1

2
�2DaR;

(18)

where the boundary integral is performed in a two sphere
at infinity at every end. Since @l� � o�r��jlj� we obtain
B � o�r2��3�. If � � 1=2 then 2�� 3 � �2 and the
boundary term vanished because ds � O�r2�. We con-
clude that for ��1=2 we have PP 	����0,P 	����
0. That is, for � � 1=2 the kernel is not trivial if and only
if the metric is static. To prove (i) we use the result that
there exists no spacetime Killing vectors which go to zero
at infinity [14,18]. The falloff behavior for Killing vectors
(15) was proved in [18]. Because the constants v�k�

0 are
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nonzero, this falloff implies that & is unique: assume that
there exists another solution &0, rescale &0 such that &0 �
& � o�r%� at some end and this contradicts (15). Finally,
we prove that static implies R � 0: in [11] it has been
proved that static implies that R is constant; by our falloff
assumption it should be zero.

(iii) We use the Fredholm alternative in weighted
Sobolev spaces (see [16,19]; note that we use different
conventions for the weights) to prove the existence of the
four independent solutions at each end: the equation
PP 	� � F, with F 2 H0

��4 will have a solution � 2

H4
� if and only if Z

S
F&d� � 0 (19)

for all & 2 H0
�0 such that PP 	& � 0, with �0 � 1� �.

We prove first the existence of �j (in the following we
will suppress the end label �k�; all the calculations are
done in one arbitrary end). Set �j � xj � �̂j, then �̂j

satisfies the equation

P P 	��̂j� � �PP 	�xj�: (20)

We have that PP 	�xk� 2 H0
%�3. Since % � �1=2 we can

take �̂j 2 H4
1=2 in Eq. (20). From the discussion above we

have that a solution �̂j 2 H4
1=2 of (20) will exist if and

only if the right hand side satisfies the condition (19).
Since � � �0 � 1=2 in this case, we can use (ii) to
conclude that a nontrivial & will exist if and only if
�S; hab� is static. Then, if the metric is not static we do
not have any restrictions and the solutions �̂j exist. If the
metric is static, we computeZ

S
&PP 	�xj� �

Z
S
xjPP 	�&� �

I
@S
Ban

ads; (21)

�
I
@S
Banads; (22)

where

Ba � �2&Da�xj � 2�&Daxj � P 	�xj�abDb&

� 2xjDa�&� 2�xjDa&; (23)

and we have used that P 	�&�ab � 0. We use the falloff
(15) for &, the falloff (12) for the metric, and the fact that
�$xj � 0 (where �$ is the flat Laplacian), to conclude
that Ba � o�r�2�; then the boundary integral (22) van-
ishes and the solution exists also when the metric is static.

For the solution ) we proceed in an analogous way. Let
� � 0 be an arbitrary constant. We have that PP 	��r� 2
H0

%�3 (here we use that �$�$r � 0). If the metric is not
static there exists a solution )̂ 2 H4

1=2 of

P P 	�)̂� � �PP 	��r�: (24)

If the metric is static we can compute condition (19) as we
did in Eqs. (21)–(23)Z

S
&PP 	��r� � �2

I
@S
&Da���r�n

ads (25)
-3



P H Y S I C A L R E V I E W L E T T E R S week ending
3 DECEMBER 2004
� 16.�&0; (26)

where &0 � 0 is the constant given in (15) and we have
used �$r � 2=r. Then, the constant � is zero if and only
if the metric is static.

For every end, we have constructed four independent
solutions, then N��� � 4n.

(iv) The Fredholm index of PP 	 is given by

/��� � N��� � N�1� ��: (27)

When S � R3 the index /��� of PP 	 is equal to the index
/0��� of the flat operator �$�$ (see [19]). To prove (ii0)–
(iii0) we will calculate /0��� and use /��� � /0���.

Assume �$�$& � 0, that is �$w � 0, w � �$&. If
& 2 Hk

� with �< 2, then w 2 Hk�2
��2, we use the

Liouville theorem proved in Corollary 1.9 of [15] to
conclude that w � 0. Then �$& � 0, using again this
result we conclude that for 0<�< 1 we have & � 1,
and for 1<�< 2 we have & � 1; xj. Then we have
/0��� � 0 for 0<�< 1 and /0��� � 4 for 1<�< 2.

(ii0) We have 0 � i0��� � i��� � N��� � N��0�. We
only need to prove the case 1=2<�< 1. In this case
we have 0<�0 < 1=2, using (ii) we get N��0� � 1, and
the equality holds if and only if the metric is static.

(iii0) We have 4 � i0��� � i��� � N��� � N��0�, and
�0 < 0; using (i) we get N��0� � 0.

The new invariants are given by the constants ��k�.
They can be written as a boundary integral at each end Sk

��k� �
�1

8.

I
@Sk

naDa�)�k�ds (28)

Note that )�k0� � o�r1=2� at Sk0 , for k0 � k, then if we
calculate (28) for )�k0� we get zero. Also, if we compute
this boundary for �j we get zero.

If we assume R � 0 (in the previous theorem the metric
is not assumed to satisfy the constraint equations), using
Eq. (10) we get another representation for ��k� as a volume
integral

��k� �
1

16.

Z
S
)�k�RabR

abd�: (29)

Since we have the freedom to rescale ) by an arbitrary
constant, we need to normalize ) if we want to compare
� for different data. In the case of S � R3 we have a
natural normalization. Let hab be a metric on R3. Assume
that there exists a smooth family hab�1� such that for 0 �
1 � 1 it satisfies the hypothesis of the previous theorem
and hab�1� � hab and hab�0� � $ab. Then, for every 1 we
get a solution )�1�. The flat solutions )�0� are the con-
stants. We normalize ), setting )�0� � 1. With this nor-
malization, we can calculate � up to second order in 1

� �
12

16.

Z
S

_Rab _Rabd��O�13� (30)

where _Rab � dRab�1�=d1j1�0.
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The solutions �j provide a coordinate system near
infinity. In the nonflat case this system is unique up to
rotations, the translation freedom at infinity is fixed be-
cause the constants are not solutions of Eq. (14).

Since P 	��j� 2 H0
�3=2 we have that the functional

J��j� defined in (7) is finite. The solutions �j are the
minimum of this functional with the boundary conditions
�j � xj � o�r1=2� at infinity. The numbers J��j� are a
measure of how far the metric hab is of having a boost
Killing vector. The falloff conditions of �j are like the
ones for the boost Killing vectors. In contrast, the solution
) has a different falloff as the time translation. This
difference is reflected also in the fact that J�)� is infinite,
it grows like J�)� � �r at infinity.
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