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Temperature in Nonequilibrium Systems with Conserved Energy
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We study a class of nonequilibrium lattice models which describe local redistributions of a globally
conserved energy. A particular subclass can be solved analytically, allowing us to define a temperature
Tth along the same lines as in the equilibrium microcanonical ensemble. The fluctuation-dissipation
relation is explicitly found to be linear, but its slope differs from the inverse temperature T�1

th . A
numerical renormalization group procedure suggests that, at a coarse-grained level, all models behave
similarly, leading to a two-parameter description of their macroscopic properties.
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Understanding the behavior of nonequilibrium systems
with a large number of degrees of freedom remains one of
the major goals for statistical physics. Many attempts have
been made to describe such systems in terms of a limited
set of macroscopic parameters, like in the equilibrium
case [1]. In the context of glasses (i.e., materials with huge
relaxation times), an effective temperature —first intro-
duced in a phenomenological way [2– 4]—has been de-
fined from linear fluctuation-dissipation relations (FDR),
on the basis of mean-field spin-glass models [5], and was
shown to satisfy the basic properties needed to define a
temperature [6]. Since then, this FDR has been tested
numerically [7–13] and experimentally [14–18] in many
realistic glassy systems. Still, no clear consensus con-
cerning the good definition of temperature has emerged
since the measured FDR are not always linear.

Apart from glassy materials, other classes of systems
having a finite relaxation time (granular gases, non-
Hamiltonian spin models, etc.) can be considered as out
of equilibrium in the sense that their dynamics does not
fulfill detailed balance (DB). Their steady state cannot be
described in general in the framework of equilibrium
statistical physics, even though they can share some
quantitative properties with equilibrium systems— e.g.,
critical behavior [19,20]. A few attempts [21–24] have
been made to define an effective temperature from
Jaynes’ maximum entropy condition [25] or from FDR,
but the interpretation of the resulting temperatures re-
mains to be clarified.

Since the breaking of DB plays a key role in nonequi-
librium systems, it is worth distinguishing several forms
of DB.What is often referred to as DB in the literature is a
canonical version:

W��j��e�E�=T � W��j��e�E�=T; (1)

where W��j�� is the transition rate from state � to state
�. This form is just a simple way to enforce canonical
equilibrium when defining a stochastic model, hence its
usefulness for numerical simulations. Still, one could
wish to define stochastic models in a microcanonical
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situation. In this case, the stochastic dynamics should
obviously conserve the energy, and one can also assume
a microcanonical DB relation W��j�� � W��j��.
Actually this form of DB—also called microreversibil-
ity—is not just a useful recipe but can be given a funda-
mental interpretation in an equilibrium context, as it is
associated with the time-reversal symmetry of the under-
lying Hamiltonian dynamics.

Turning to nonequilibrium systems, one expects on
general grounds that the dynamics breaks the time-
reversal symmetry due to the presence of fluxes or dis-
sipation. So it may be of interest to study the most simple
nonequilibrium stochastic systems, which are defined by
relaxing only the microreversibility condition, replacing
it by a more general DB relationW��j��f� � W��j��f�,
while preserving the energy conservation.

In this Letter, we study a class C of nonequilibrium
lattice models which describe local redistributions of a
globally conserved energy. A particular subclass Cs, de-
fined later on, satisfying DB (but not always microrever-
sibility) can be solved analytically, allowing to define a
temperature Tth along the same lines as in the equilibrium
microcanonical ensemble. Moreover, we derive explic-
itely the FDR and show that it is linear, with a slope
different from the inverse temperature T�1

th , thus ques-
tioning the relevance of FDR to define temperature in
nonglassy out-of-equilibrium systems. In addition, a
functional renormalization group procedure implemented
numerically, suggests that any model from class C be-
haves macroscopically like a member of the subclass Cs,
indicating that DB is restored on a coarse-grained level.

Our models are defined as follows. A real variable
�1< xi <1 is attached to each site i of a
d-dimensional hypercubic lattice with N sites. The
(pseudo-)energy E � 1

2

PN
i�1 x

2
i is conserved by the dy-

namics defined by the following stochastic rules. At each
time step, a link �i; j� is randomly picked up on the lattice,
and a random number q 2 �0; 1	 is drawn from a sym-
metric distribution  �q�. Then the variables xi and xj are
updated as
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x0i � �
����������������������
q�x2i � x2j �

q
; x0j � �

����������������������������������
�1� q��x2i � x2j �

q
: (2)

The sign � is randomly chosen with equal probability.
The different models in C are distinguished by  �q�.
These dynamical rules can be formulated in terms of a
master equation with transitions rates W�fx0igjfxig�. It is
generally hopeless to find the stationary solution of a
master equation unless the DB condition is fulfilled. Let
us define the subclass Cs, consisting of the models for
which  �q� is chosen to be a beta distribution:

 �q� �
��2��

����2
q��1�1� q���1; � > 0: (3)

It can be shown that in this case, DB holds, namely,

W�fx0igjfxig�
YN
i�1

jxij
2��1 � W�fxigjfx

0
ig�

YN
i�1

jx0ij
2��1: (4)

Technical details will be reported elsewhere [26].
Thus microreversibility is recovered only for � � 1

2—a
case similar to � � 1=2 has been studied in [27]. The
steady-state distribution is readily obtained from Eq. (4)
by taking into account the energy conservation and nor-
malizing the resulting distribution:

Pst�fxig� �
1

ZN�E�

YN
i�1

jxij
2��1�

�XN
i�1

x2i
2
� E

�
(5)

with ZN�E� � KNE
�N�1 and KN � 2�N����N=���N�.

For � � 1
2 , this distribution is clearly nonuniform over

the states of given energy; one can then expect important
differences with equilibrium systems.

In the framework of equilibrium microcanonical en-
semble, a well-defined prescription exists for introducing
temperature. One considers an isolated system (with con-
stant energy) and divides it into two subsystems.
Temperature is introduced as a thermodynamic parameter
which takes equal values in both subsystems. If moreover
the value of this parameter is independent of the choice of
the partition, the parameter can be said to characterize
the whole system.

We consider a partition into subsystems S1 and S2

which can exchange energy while keeping E1 � E2 � E
fixed. The energies E1 and E2 are fluctuating, but in the
limit of large subsystems, the mean value of Ek can be
identified with its most probable value E�

k. Generalizing
the equilibrium procedure, the relevant quantity to com-
pute is then the conditional probability P�E1jE� that the
subsystem S1 has energy E1 given that the total energy is
E. Using Eq. (5), one finds

P�E1jE� �
ZN1

�E1�ZN2
�E� E1�

ZN�E�
: (6)

In the usual equilibrium microcanonical ensemble, ZN�E�
reduces to the phase-space area �N�E� of the hypersur-
face with energy E. The most probable energy E�

1 is found
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from @ lnP=@E1jE�
1
� 0, which gives

@ lnZN1

@E1

��������E�
1

�
@ lnZN2

@E2

��������E�
2

: (7)

This allows to define a temperature Tkth for each subsys-
tem k through (we set kB � 1)

1

Tkth
�
@ lnZNk
@Ek

��������E�
k

: (8)

Thus Eq. (7) implies T1
th � T2

th. It can be checked that the
common value does not depend on the partition chosen
[26], so that this temperature can be safely said to char-
acterize the whole system.

From the expression of ZN�E�, one finds Tth � "=�,
where " � E=N is the energy density. Also, considering
subsystem S1 as very small with respect to S2, but still
macroscopic, one can derive in a similar way the ‘‘ca-
nonical’’ probability distribution:

Pcan�fxig� �
1

Zcan
N1

YN1

i�1

jxij2��1 exp
�
�

PN1
i�1 x

2
i

2Tth

�
: (9)

Another way to introduce a temperature in nonequilib-
rium systems is to consider generalized FDR. This ap-
proach has received considerable attention since it has
been given a precise interpretation in the context of
glasses [6]. Still, its applicability for nonglassy out-of-
equilibrium systems remains to be clarified, and can be
tested within the present model. To this aim, an external
field h must be introduced to allow for the definition of a
response function. A natural way to include an external
field is to add to the energy E a perturbing term �h

P
ixi;

one can rewrite the energy Eh �
1
2

PN
i�1�xi � h�2 up to an

irrelevant additive constant. Note that Eh has the same
form as E in terms of the variables vi � xi � h. The
dynamics of the vi’s is then defined in the same way as
for the xi’s in the absence of field, which is consistent with
the equilibrium procedure. One then recovers for vi the
canonical distribution Eq. (9).

To compute the response function, we assume that the
system, subjected to a field, is in steady state for t < 0. At
time t � 0, the field is switched off. The response is
defined for t > 0 by !�t� � @ < N�1P

ixi > =@hjh�0.
From the canonical distribution, the following FDR is
derived:

!�t� �
1

Tth
hxi�t�xi�0�ih�0 � �2�� 1�

	
xi�t�
xi�0�



h�0

: (10)

Although Eq. (10) does not lead at first sight to a linear
relation between !�t� and hxi�t�xi�0�i, some simplifica-
tions actually occur. Indeed, it can be seen that correla-
tion functions of the form hxi�t�

nxi�0�
mi with odd integers

n and m are all proportional to the ‘‘hopping correlation
function’’ 
�t� � hN�1 PN

i�1$i�t�i, with $i�t� � 1 if
xi�t� � xi�0� and $i�t� � 0 otherwise. More specifically,
hxi�t�

nxi�0�
mi � hxi�0�

n�mi
�t� [28].
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As a result, one has hxi�t�xi�0�i � 2"
�t�, and
hxi�t�=xi�0�i � 
�t�, so that the FDR (10) can be rewrit-
ten,

!�t� �
1

2"
hxi�t�xi�0�i; (11)

yielding a fluctuation-dissipation (FD) temperature
TFD � 2", which is different from Tth � "=� (except in
the case � � 1

2 for which microreversibility is recovered).
This leads us to the question: which of the two tem-

peratures Tth and TFD is more relevant from a physical
point of view? Actually, it could be argued that both
temperatures may be equivalent up to a redefinition of
the temperature unit: if Tth takes the same value in two
subsystems, so does TFD. Still, this conclusion only re-
mains valid as long as � takes the same value throughout
the system. It is then natural to test a more general
dynamics. Interestingly, DB still holds if one introduces
on each link a different distribution  ij�q�:

 ij�q� �
���i � �j�

���i����j�
q�i�1�1� q��j�1; (12)

where �i can take a different value on each site i; q refers
to site i and 1� q to site j as in Eq. (2). Then the micro-
canonical distribution Pst�fxig� takes the same form as
in Eq. (5), simply replacing

Q
ijxij

2��1 by
Q
ijxij

2�i�1.
Following the same lines as above, P�E1jE� is easily
computed and leads to equal values of the temperature
Tkth in both subsystems, with Tth � "k=h�ik (h�ik denotes
a spatial average of �i over subsystem k). On the contrary,
the FDR formally keeps the same form as previously, and
the FD temperature remains related to the energy density
through TFD � 2". Choosing f�ig such that h�i1 � h�i2,
the equality T1

th � T2
th implies "1 � "2. The equipartition

of energy breaks down, which in turn leads to T1
FD � T2

FD.
Note that similar results have been reported for binary
granular gases [23].

Thus the two temperatures Tth and TFD are not equiva-
lent up to a change of temperature unit, but differ quali-
tatively since TFD does not necessarily take the same
value in two systems which can freely exchange energy.
Still, if Tth was not known, one could have tried to argue
that TFD is the correct temperature, in a spirit similar to
the procedure invoked in [6] for glassy systems. Indeed,
connecting a new site acting as a thermometer to the
existing system, one may identify its average energy
with 1

2T, as done also to define a granular temperature
[29]. Interestingly, this yields precisely the same result as
TFD, i.e., T � 2" (assuming a uniform �). That Tth is
different from TFD in this model thus means that the
temperature does not reflect only the average energy,
but also the amplitude of the energy fluctuations. For
instance, as Tth � "=�, a large value of � implies a low
temperature and corresponds also to a sharp distribution
 �q�, leading to small fluctuations.

Up to now, we have considered only the subclass Cs
where  �q� is a beta distribution, for which a form of DB
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holds. But what happens for more general distributions?
In particular, one could wonder whether versions of the
model with beta distributions are in some sense represen-
tative of the generic behavior of all the models belonging
to C. If  �q� is different from a beta law, no DB holds
[30], and there is no clear way to find analytically the
steady-state distribution Pst�fxig�. Yet, numerical simula-
tions show that even for distributions  �q� far from beta
laws, the two-point spatial correlation functions still van-
ish in steady state. This is also consistent with calcula-
tions made in the ‘‘q model’’ for static sand piles, which
exhibits some formal similarities with (although it is not
equivalent to) the present model [31]. This suggests, as
already proposed in [20], that DB may be restored on a
coarse-grained level.

A standard way to coarse grain the system is to in-
troduce a renormalization group procedure for  �q�.
Since the distribution Pst�fxig� is not known, an analytical
approach seems doomed from the outset. We thus imple-
ment numerically a functional renormalization group
procedure in the following way: a large system is divided
into blocks of Ld sites each. Then one runs the dynamics
and chooses a link in order to redistribute the energy. If
both sites of the link belong to different blocks, then the
energies E1

b and E2
b of the two blocks are computed,

leading to the renormalized value qR � E1
b=�E

1
b � E2

b�,
which describes the effective dynamics between blocks.
The histogram of the values of qR obtained over the
dynamics is recorded, yielding the renormalized distri-
bution  L�q�. If the initial distribution  �q� is a beta law,
the renormalized one is also a beta law. Indeed, the (one-
site) distribution of the local energy "i �

1
2 x

2
i is a gamma

distribution with parameter �. Since the "i’s are inde-
pendent variables, the block energy Eb also follows a
gamma distribution of parameter �L � �Ld, leading to
a beta law with parameter �L for qR. This renormaliza-
tion procedure is illustrated in Fig. 1 for L � 2n (data
obtained by iterating n times the renormalization with
L � 2), starting from the nonbeta distribution  �q� �
(
2 j sin�2(q�j (filled circles).Very interestingly,  L�q� con-
verges asymptotically when L increases towards beta
distributions with exponent �L linear in Ld (Fig. 1).
This procedure has been used for many different initial
distributions and all of them lead to beta laws at the
coarse-grained level with �L / Ld. Consequently, an ef-
fective value �e can be defined for any  �q� as �e �
�L=L

d (L� 1). Using a beta law with parameter �e in
the basic kinetic rules, one recovers the same coarse-
grained behavior as with the original  �q�.
Interestingly, �e can be computed within a mean-field
approximation [26], yielding

�e �
1

8Var�q�
�

1

2
; (13)

where Var�q� � hq2i � hqi2 is the variance of the distri-
bution  �q�. This value is in excellent agreement with the
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FIG. 1. Renormalized distribution  L�q� for increasing sizes
L, in dimension d � 1 (L � 1, initial distribution). Solid lines
correspond to one-parameter fits with beta distributions. Inset:
parameter �L from the fit vs Ld for d � 1 (+) and d � 2 (�);
dashed line is the mean-field prediction shown in Eq. (13).
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numerical simulations (Fig. 1). The above results suggest
an appealing scenario for the description of nonequilib-
rium systems with a conserved quantity and short-range
correlations. Breaking the time-reversal symmetry leaves
considerable freedom to choose the dynamics, but the
renormalization group procedure shows that the macro-
scopic behavior can be described by a single parameter �e
in addition to Tth. This new parameter �e essentially
describes the way a globally conserved quantity is dis-
tributed among the different degrees of freedom. Its value
is fixed in equilibrium: �eq �

1
2 here, but different values

could be expected in other models—for instance, �eq �
1
p for E � 1

p

P
ijxij

p. Note that the present approach uses a
renormalization procedure in a context where there is a
priori no diverging length scale in the system, i.e., not
close to a critical point [20].

In conclusion, we have shown how to define a mean-
ingful temperature Tth from the conditional energy dis-
tribution of subsystems, within a class of finite-
dimensional nonequilibrium models with conserved en-
ergy. The stationary distribution is generally nonuniform
over the states with given energy. The temperature de-
duced from FDR does not coincide with Tth, thus showing
that FDR are not necessarily the most relevant way to
define a temperature in out-of-equilibrium (and non-
glassy) steady-state systems. Finally, a numerical renor-
malization group approach indicates that DB is restored
on a coarse-grained level even when this property is not
satisfied microscopically. This renormalization procedure
allows to define a parameter �e which encodes the de-
viation from equilibrium. The macroscopic behavior of
the model is then described by the two parameters Tth and
�e, i.e., one more parameter than in equilibrium is
required.
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