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Mirror Inversion of Quantum States in Linear Registers
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Transfer of data in linear quantum registers can be significantly simplified with preengineered but not
dynamically controlled interqubit couplings. We show how to implement a mirror inversion of the state
of the register in each excitation subspace with respect to the center of the register. Our construction is
especially appealing as it requires no dynamical control over individual interqubit interactions. If,
however, individual control of the interactions is available then the mirror inversion operation can be
performed on any substring of qubits in the register. In this case, a sequence of mirror inversions can
generate any permutation of a quantum state of the involved qubits.
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The network (circuit) model of quantum computation is
justifiably the most popular model for investigating both
computational power and possible experimental realiza-
tions of quantum computers. One of its many appealing
features is the reduction of quantum computation to pre-
scribed sequences of elementary operations (quantum
logic gates) performed either on individual qubits or on
pairs of qubits [1]. However, a tacit assumption that
single- and two-qubit operations are much easier to im-
plement than multiqubit operations is not always valid. In
fact, there are potentially interesting technologies, for
example, optical lattices [2], arrays of quantum dots [3–
6], or NMR [7,8], in which joint operations on several
qubits are relatively easy whereas addressing individual
qubits poses a substantial experimental challenge. Thus it
is important to investigate quantum computation with
limited control over individual qubits. Here we show
that transfer of data in quantum registers can be signifi-
cantly simplified with preengineered but not dynamically
controlled interqubit couplings.

It is known that quantum computation could in princi-
ple be performed by a chain of qubits coupled via the
Heisenberg or the XY interactions [9], and that it suffices
to control the qubits collectively [10]. Such a chain of
qubits represents a quantum register. Further simplifica-
tions to this model have been recently introduced by Zhou
et al. [11] and by Benjamin and Bose [12]. Still, a signifi-
cant number of elementary operations in the process of
computation is delegated to moving around quantum
states of individual qubits. We show how to simplify these
operations by implementing a mirror inversion of a quan-
tum state with respect to the center of the chain. More
precisely, given a chain of N � 1 qubits described by the
wave function ��s0; . . . sN�, where sn � 0; 1 denotes the
bit values of the nth qubit, we show how to implement the
transformation R
04=93(23)=230502(4)$22.50 230502
R��s0; s1 . . . ; sN�1; sN� � �����sN; sN�1; . . . ; s1; s0�:

(1)

Our construction has the advantage that it can be done
without applying any dynamical control to the qubits; it
only exploits the natural dynamics of the chain governed
by a preengineered mirror-periodic Hamiltonian H such
that exp��iTH� � R for some time T.

Apart from obvious applications, such as a perfect
quantum wire or a ‘‘data bus’’ linking the two opposite
ends of the chain, the study of periodic and mirror-
periodic dynamics of chains of spins with nonhomoge-
nous couplings is an interesting subject on its own, with
potential applications outside quantum computation, e.g.,
in the design of frequency standards and in mathematical
finance.

Consider N � 1 interacting qubits, or spin-1=2 parti-
cles, in a quantum register. We choose the Hamiltonian of
the system to be of the XY type
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where J‘ is the coupling strength between the qubits
located at sites ‘ and ‘� 1, and h‘ is the ‘‘Zeeman’’
energy of a qubit at site ‘. Please note that here, ‘ labels
the position of a qubit in the register, whereas the three
Pauli matrices are denoted as �x, �y, and �z.

Now our task is to find the values J‘ and h‘ for which
the Hamiltonian H is mirror-periodic. The total z com-
ponent of the spin, given by

�z
tot: �

XN
‘�0

�z
‘ (3)

is conserved, i.e., 	�z
tot; H
 � 0. Hence the Hilbert space

of the register decomposes into invariant subspaces, each
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of which is a distinct eigenspace of the operator �z
tot. The

eigenspace with eigenvalue �2M � N � 1�=2 corresponds
to exactly M qubits having bit value 1. Let us denote this
subspace by SM.

For convenience of our exposition, we adopt here the
standard fermionization technique [13]. We will view the
register as a lattice with N � 1 sites, some of which are
occupied by indistinguishable and noninteracting, spin-
less fermions. The bit values 1 and 0 indicate the presence
and the absence of the fermion at a given lattice site and
the Pauli exclusion principle prevents two or more fermi-
ons to occupy the same site. The subspace SM corre-
sponds to the M-fermion sector, in which M of the
N � 1 lattice sites are occupied by fermions. The
Jordan-Wigner transformation

a‘ �

 Y
k<‘

�z
k

!
�x

‘ � i�y
‘

2
; ay‘ �

 Y
k<‘

�z
k

!
�x

‘ � i�y
‘

2

(4)

allows to rewrite the Hamiltonian (2) in the second
quantization form using the fermionic operators a‘
and ay‘ ,

H �
XN�1

‘�0

J‘�a
y
‘ a‘�1 � ay‘�1a‘� �

XN
‘�0

h‘a
y
‘ a‘: (5)

The Hamiltonian H in (5) describes a set of N � 1 non-
interacting (or free) fermions which hop between adja-
cent sites of the lattice and are subject to a nonuniform
magnetic field, denoted by h‘, ‘ � 0; 1; . . . ; N. Let j‘i
denote a state in which there is a single fermion at the
site ‘ and all other sites are empty. Then the set of states
fj‘ig forms a basis spanning the subspace S1. In this
single-particle basis, the Hamiltonian H is represented
by the matrix

h0 J0 0 � � � 0
J0 h1 J1 � � � 0
0 J1 h2 � � � 0

..

. ..
. ..

. . .
.

JN�1

0 0 0 JN�1 hN

0
BBBBBB@

1
CCCCCCA: (6)

The dynamics of the register is completely determined by
the eigenvalues and eigenvectors of the above matrix. Let
us denote the energy eigenvalues of the matrix by Ek,
where k � 0; 1; . . . ; N, and the corresponding energy ei-
genfunction by �k�‘� (where ‘ 2 f0; 1; . . . ; Ng). The latter
corresponds to a single fermion at the site ‘ of the chain.
In the M-fermion sector, the energy of M fermions occu-
pying orbitals 0 � k1 < � � �< kM � N is then given by
230502
Ek1;...;kM �
XM
i�1

Eki (7)

and the corresponding M-particle energy eigenfunction
can be written as the Slater determinant

�k1;...;kM �‘1; . . . ;‘M��
1�������
M!

p

������������������

�k1 �‘1� ��� �k1 �‘M�

..

. . .
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������������������
:

(8)

The eigenfunction �k1;...;kM �‘1; . . . ; ‘M� is completely
antisymmetric. Let us now see how this eigenfunction
is related to the wave function of the quantum register.

In the subspace SM, the wave function of the register
��s0; . . . ; sN� can be expressed as ��‘1; . . . ; ‘M�, where
‘1; . . . ; ‘M label the qubits that have bit values equal to 1.
Each of the remaining qubits have bit value 0. In other
words, the value of ��‘1; . . . ; ‘M� gives the probability
amplitude that the qubits located at the sites ‘1; ‘2; . . . ; ‘M
represent binary ‘‘1’’ and all other qubits represent binary
‘‘0.’’ Note that the wave function ��‘1; . . . ; ‘M� is sym-
metric under an interchange of its labels, and is hence
bosonic. It can, however, be expressed in terms of the
fermionic wave functions �k1;...;kM �‘1; . . . ; ‘M� in the fol-
lowing manner: in the sector ‘1 < ‘2 < . . .< ‘M, the
wave function of the register corresponding to the energy
eigenvalue Ek1;...;kM is set equal to the fermionic eigen-
function �k1;...;kM �‘1; . . . ; ‘M�:

��‘1; . . . ; ‘M� � �k1;...;kM �‘1; . . . ; ‘M� (9)

� �k1;...;kM �‘1; . . . ; ‘M�: (10)

In the other sectors, the two differ by the sign giving the
parity of the permutation required to reshuffle the argu-
ments in increasing order.

A Hamiltonian is said to be mirror-periodic if it sat-
isfies

e�iTH��‘1; . . . ; ‘M� � ��1���N � ‘1; . . . ; N � ‘M�

(11)

for each 1 � M � N, the sign depending on M and N
only. Since ��‘1; . . . ; ‘M� is bosonic, we can choose ‘1 <
‘2 < . . .< ‘M. Now,

e�iTH��‘1; . . . ; ‘M� � e�iTH�k1;...;kM �‘1; . . . ; ‘M�: (12)

Our aim is to find Hamiltonians H for which the right-
hand side of Eq. (12) is given by �k1;...;kM �N � ‘1; . . . ; N �

‘M�. This would imply mirror periodicity of H since
�k1;...;kM �N � ‘1; . . . ; N � ‘M� � ��1�	M�M�1�
=2��N � ‘1; . . . ; N � ‘M� (13)

by the above discussion.
The mirror periodicity with period T implies periodicity with period 2T, which in turn implies that for all k the

quantity 2TEk is an integer multiple of 2� in units for which �h � 1 and �k�N � ‘� � ��k�‘�.
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We found two families of mirror-periodic Hamil-
tonians: one (A) with linear spectrum and the other (B)
with quadratic spectrum. An alternative proof of mirror
periodicity for the case (A), in the single-particle sector,
was given by Christandl et al. [14]. The proof relied on
identifying the Hamiltonian operator with the generator
of space rotations and employed group theoretical meth-
ods. In this Letter we recognize that the mirror period-
icity extends to all multiparticle sectors and that it is also
shared by another finite quantum chain with eigenfunc-
tions given by Hahn polynomials. Let us now discuss
cases (A) and (B) in detail:

(A) The quantum chain with linear spectrum P�k� � k
has eigenfunctions �k�‘� proportional to Krawtchouk
polynomials. This polynomial basis has been used by
Atakishiev et al. [15] to construct finite quantum chains
admitting periodic solutions.

The Krawtchouk quantum chain, which is mirror-
periodic of period T � �, has couplings

J‘ �
��������������������������������
�‘� 1��N � ‘�

p
; h‘ � 0: (14)

The Krawtchouk polynomials are defined in terms of the
hypergeometric functions F as

Kk�‘; p; N� � 2F1

�k;�‘
�N

��������1

p
1

� �
; (15)

where k � 0; 1; 2; . . . ; N. The energy eigenfunctions are

�k�‘� � ck
����������
w�‘�

p
Kk

�
‘;
1

2
; N
�
; (16)

where ck and w�‘� are given by

ck �

�������������������
��N�k
��1�kk!

;

s
w�‘� �

1

2N
N
‘

� �
: (17)

The corresponding eigenvalues are Ek � �k: In the defi-
nitions above we have used the Pochhammer symbol,
�N�k defined as

�N�k � N�N � 1� . . . �N � k� 1�; k � 1; 2; 3; . . .

(18)

with �N�0 � 1, and the generalized binomial symbol ex-
pressed in terms of the � function as

N
‘

� �
�

��N � 1�

��N � ‘� 1���‘� 1�
: (19)

For a more comprehensive description of the Krawtchouk
polynomials, we refer to [16].

The energy eigenfunctions satisfy the property of re-
flection symmetry (or antisymmetry):

�k�N � ‘� � ��1�k�k�‘� (20)

for all ‘ and all k � 0; 1; 2; . . . ; N. This follows from the
following property of the Krawtchouk polynomials:

Kk

�
N � ‘;

1

2
; N
�
� ��1�kKk

�
‘;
1

2
; N
�
; (21)
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and the fact that the weight function in (17) is symmetric.
The phases ��1�k in (20) perfectly offset the dynamical
phases acquired after a time period T � �, as
exp��iTEk� � ��1�k. This shows that the chain defined
by the Hamiltonian corresponding to the Krawtchouk
polynomials is mirror symmetric with period �.

The dynamics of the Krawtchouk quantum chain of
N � 1 sites is the same as that of a spin s � N=2 particle
governed by the Hamiltonian Hs � 2sx. This Hamilton-
ian acts as follows on the basis vectors jmi;m��s; . . . ;s:

Hsjmi � R�m�jm� 1i � L�m�jm� 1i;

where

R�m� �
��������������������������������������������
s�s� 1� �m�m� 1�

p
L�m� �

��������������������������������������������
s�s� 1� �m�m� 1�

p
:

It is possible to establish a relation between Hs and a
mirror-periodic Krawtchouk chain of N � 1 � 2s� 1
sites. This is done by identifying the state j‘i correspond-
ing to a single-particle occupying the site ‘ with the state
jmi, where m � s� ‘. In this case, R�m� reduces to J‘
and L�m� reduces to J‘�1, showing that the spin
Hamiltonian Hs is equivalent to the mirror-periodic
Krawtchouk Hamiltonian.

(B) One can use Hahn polynomials to find a family of
mirror-periodic quantum chains whose period is an in-
teger multiple of � with quadratic spectrum Ek � k�k�
2$� 1�, where $ is of the form

$ �
2p� 1

2q
(22)

where p; q are integers with q � 0. The couplings are

J‘ �
�����������������������������������������������������������������������������������
�‘� 1��N � ‘��$� N � ‘��$� ‘� 1�

p
(23)

and the Zeeman terms are given by

h‘ �
N2

2
� �$� 1�N � 2

�
‘�

N
2

�
2
: (24)

This model has eigenfunctions �k�‘� given by Hahn
polynomials. The Hahn polynomials are defined in terms
of the hypergeometric functions F as

Qk�‘;$;';N� � 3F2

�k; k� $� '� 1; ‘
$� 1;�N

��������1
� �

; (25)

where k � 0; 1; 2; . . . ; N. The energy eigenfunctions of
the Hamiltonian (2) are given by

�k�‘� � ck
����������
w�‘�

p
Qk�‘;$;$; N�; (26)

where ck is the constant

ck �

���������������������������������������������������������
�2k� 2$� 1��N!�2

�k� 2$� 1�N�1k!�N � k�!

s
; (27)

and w�‘� is the weight function
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w�‘� �
$� ‘
‘

� �
$� N � ‘
N � ‘

� �
: (28)

For further details on Hahn polynomials, see [16].
To show that the �k�‘� are either reflection symmetric

or antisymmetric, we notice that

Qk�N � ‘;$;$;N� � ��1�kQk�‘;$;$; N�; (29)

and that the weight function in (28) is symmetric. Hence,
�k�N � ‘� � ��1�k�k�‘� for all ‘ and all k � 0; 1;
2; . . . ; N. If $ satisfies (22) and T � q�, the phases
��1�k perfectly offset the dynamical phases. In fact,

exp��iTEk�� exp��i�	q�k2�k���2p�1�k
����1�k;

(30)

since k2 � k is even for all k � 0; . . . ; N. This shows that
the Hahn chain is mirror-periodic of period T � q�.

The Hahn chain Hamiltonian in the special case q �
1, i.e., when $ � �2p� 1�=2 is half-integer, is related to
atomic Hamiltonians with L � S coupling. Consider the
Hamiltonian

HLS � L � S (31)

restricted to the sector with fixed total angular momen-
tum L, total spin S, and with projections along a fixed
axis adding up to zero, i.e., M � ML �MS � 0. The
Hamiltonian in (31) acts as follows on the basis vectors
jMSi � jL; S;ML;MSi:

HLSjMSi � DjMSi � RjMS � 1i � LjMS � 1i; (32)

where

D � D�MS� � �M2
S (33)

R � R�MS� �
1

2

�������������������������������������������������
�L�MS��L�MS � 1�

q

�
������������������������������������������������
�S�MS��S�MS � 1�

q
(34)

L � L�MS� �
1

2

�������������������������������������������������
�L�MS��L�MS � 1�

q

�
������������������������������������������������
�S�MS��S�MS � 1�

q
: (35)

Assuming that S < L and that S is a half-integer, it is
possible to establish a relation between HLS and a mirror-
periodic Hahn chain of N � 2S sites and $ � L� S.
This is done by identifying the state j‘i corresponding
to a single particle occupying the site ‘ with the state
jMSi, where MS � S� ‘.We find R�MS� �

1
2 J‘, L�MS� �

1
2 J‘�1, and D�MS� �

1
2h‘ � const. This shows that the LS

coupling Hamiltonian is proportional to a mirror-
periodic Hahn Hamiltonian up to a constant energy shift.

In conclusion, in this Letter we have demonstrated how
to simplify transfer of data in quantum registers by
implementing a mirror inversion of a quantum state
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with respect to the center of the register. Our construction
is especially appealing as it requires no dynamical con-
trol over individual qubits but only preengineered inter-
qubit couplings. If, however, individual control of the
interactions is available, then the mirror inversion opera-
tion can be performed on any substring of qubits in the
register. In this case, a sequence of mirror inversions can
generate any permutation of a quantum state of the in-
volved qubits.
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