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In this Letter we show that the extraordinary optical transmission phenomenon found before in 2D
hole arrays is already present in a linear chain of subwavelength holes, which can be considered as the
basic geometrical unit showing this property. In order to study this problem, we have developed a new
theoretical framework, able to analyze the optical properties of finite collections of subwavelength
apertures and/or dimples (of any shape and placed in arbitrary positions) drilled in a metallic film.
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After the discovery of extraordinary optical transmis-
sion (EOT) through 2D square arrays of subwavelength
holes in an optically thick metallic film [1], several works
have appeared in order to understand the basics of this
remarkable phenomenon. From the theoretical side, the
studies can be divided in those considering the simpler
1D analog of arrays of subwavelength slits [2–4] and the
2D arrays of holes [5–8]. Several of these works ex-
plained EOT in terms of the existence of surface electro-
magnetic (EM) resonances, something pointed out by the
original experiments [1] and definitely corroborated by
recent experiments [9]. However, a question that still
remains open is what is the minimal system showing
EOT, which is interesting both from the basic point of
view and for possible future applications.

In this Letter we move a step forward in this direction
and consider the optical transmission properties of finite
chains of subwavelength holes, a basic structure with less
symmetry than the original 2D array which, up to our
knowledge, had not been considered before. Here we show
that EOT is also present in these 1D finite systems. As an
important by-product, we develop a formalism capable of
treating the optical properties of even thousands of in-
dentations (with any shape and placed arbitrarily) in
metal films, something not possible with the present
numerical methods, which are restricted to just a few of
such indentations.

Let us first present the formalism, which is a nontrivial
extension of the simpler one developed for sets of 1D
indentations and that was successfully applied [10,11] for
the understanding of enhanced transmission and beaming
of light in single apertures flanked by periodic corruga-
tions [12,13]. Here, we analyze the EM transmission
through a planar metal film (with finite thickness h and
infinite in the x-y plane) with a set of indentations at both
input and output interfaces. These indentations may be
either holes or dimples. Furthermore, each one of them
may have any desired shape and may be placed in any
position we wish. The only approximation in the formal-
ism is that the metal is treated as a perfect conductor (� �
04=93(22)=227401(4)$22.50 227401
�1). We have demonstrated in previous works that this
model captures the basic ingredients of the enhanced
transmission phenomena, being even of semiquantitative
value in the optical regime for good conductors like silver
or gold [14]. Additionally, results obtained within the
perfect conductor approximation are scalable to different
frequency regimes.

In our method, we assume a rectangular supercell, with
lattice parameters Lx and Ly, along the x and y axes,
respectively. This supercell may be real (if we are con-
sidering a bona fide periodic system) or artificial, if the
number of indentations is finite. In this latter case, the
limit Lx; Ly ! 1 must be taken.

For an incident plane wave with parallel wave vector
~k0[15] and polarization 	0, the EM field at z � 0� (at the
metal interface in which radiation is impinging on) can be
written, in terms of the reflection coefficients r ~k	, as

j ~E�0��i � j ~k0	0i 	
X
~k	

r ~k	j
~k	i;

� ~uz 
 j ~H�0��i � Y ~k0	0
j ~k0	0i �

X
~k	

r ~k	Y ~k	j
~k	i;

(1)

where we have used the Dirac notation, and expressed
the bivectors ~E � �Ex; Ey�

T and ~H � �Hx;Hy�
T (T stand-

ing for transposition) in terms of the EM vacuum eigen-
modes, j ~k	i. The expressions for these EM vacuum
eigenmodes in real space are: h ~rj ~kpi � �kx; ky�

T 


exp�� ~k ~r�=
������������������
LxLyjkj2

q
and h ~rj ~ksi � ��ky; kx�Texp�� ~k ~r�=������������������

LxLyjkj
2

q
. The electric and magnetic fields in Eq. (1)

are related through the admittances Y ~ks � kz=k! and
Y ~kp � k!=kz (for s- and p-polarization, respectively),
where k! � !=c (! is the frequency and c the speed of
light) and jkj2 	 k2z � k2!. Notice that, according to
Bloch’s theorem, ~k � ~k0 	 ~G, ~G being a (supercell) recip-
rocal lattice vector.

In the region of transmission, the electric field at z �
h	 can be expressed as a function of the transmission
-1  2004 The American Physical Society
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amplitudes t ~k	 as j ~E�h	�i �
P
~k	t ~k	j

~k	i, from where the
magnetic field can be readily calculated.

The EM fields inside the indentations can be written, in
terms of the expansion coefficients A�; B�, as:

j ~E�z�i �
X
�

j�i�A�e
�qz�z 	 B�e

��qz�z
;

� ~uz 
 j ~H�z�i �
X
�

j�iY��A�e
�qz�z � B�e

��qz�z
:

(2)

In the previous equations, � runs over all ‘‘objects,’’
which we define as any EM eigenmode considered in
the expansion. An object is, therefore, characterized by
the indentation it belongs to, by its polarization and by
the indexes related to the mode spatial dependence. All
that is required to be known are the electric field bivectors
j�i [16] and the propagation constants qz� associated to
the objects, as the admittance Y� � qz�=k! for TM
modes, while for TE modes Y� � k!=qz�. For indenta-
tions with such simple cross sections as rectangular or
circular, the required expressions for j�i and qz� can be
found analytically [17]; otherwise, they can be numeri-
cally computed [18]. By matching the EM fields appro-
priately on all interfaces, we end up with a set of linear
equations for the expansion coefficients. We find it con-
venient to define the quantities E� � A� 	 B� and E0

� �
��A�eiqz�h 	 B�e�iqz�h�, which are the modal amplitudes
of the electric field at the input and output interfaces of
the indentations, respectively. The set fE�; E0

�g must sat-
isfy:

�G�� � ���E� 	
X
 ��

G� E �GV�E
0
� � I�;

�G## � �#�E0
# 	

X
$�#

G#$E0
$ �GV#E# � 0:

(3)

The different terms in these ‘‘tight-binding’’ like equa-
tions have a simple interpretation: I� � 2ih ~k0	0j�i takes
into account the direct initial illumination over object �.
�� is related to the bouncing back and forth of the EM
fields inside object � and is �� � �iY��1	���=�1�
��� where, for holes, �� � exp�2iqz�h� and the same
expression applies for dimples, but replacing h byW�, the
depth of the dimple. The main difference between holes
and dimples is the presence of GV�, which reflects the
coupling between the two sides of the indentation. For a
hole, GV� � �2iY�

�������
��

p
=�1����, while for a dimple,

GV� � 0.
The term G� � i

P
~k	Y ~k	h�j

~k	ih ~k	j i controls the
EM coupling between indentations. It takes into account
that each point in the object  emits EM radiation, which
is ‘‘collected’’ by the object �. If the system is periodic,
G� can be calculated through the previous discrete sum
by including enough diffraction waves. If the considered
supercell is fictitious, the limit Lx; Ly ! 1 transforms
the previous sum into an integral over diffraction modes.
It is then convenient to calculate G� through G� �
227401
h�jĜj i. The integral defining the dyadic Ĝ� ~rk; ~r0k� �

h~rkjĜj ~r0ki can be evaluated, obtaining

Ĝ ij� ~rk; ~r0k� � g�d�)ij 	 �2)ij � 1�
@2g�d�
@di@dj

; (4)

where i; j can be either x or y, )ij is Kronecker’s delta,
~d � k!� ~rk � ~r0

k
�, and g�d� � k! exp��d�=�2+d� is propor-

tional to the scalar free-space Green function associated
to the Helmholtz equation in 3D.
Ĝ turns out to be the in-plane components of the EM

Green function dyadic associated to an homogeneous
medium in three dimensions [17]. As a technical note,
the calculation of G� for objects in the same indentation
from h�jĜj i suffers from the problems associated to the
divergence of Ĝ at j ~rk � ~r0

k
j ! 0 [19–21], and we evaluate

it directly from its integral over diffraction modes.
Therefore, our method reduces the calculation of EM

fields into finding the EM field distribution right at the
indentation openings, which is extremely efficient when
the openings cover a small fraction of the metal surface.
By projecting these fields into indentation eigenmodes,
convergence (as a function of number of eigenmodes
needed) is reached very quickly, especially in the sub-
wavelength regime. Notice that Eq. (3) can also be used
for an infinite periodic array of indentations by imposing
Bloch’s theorem on the set fE�; E0

�g, something we will
make use of when analyzing the case of an infinite linear
chain (see below).

Once the self-consistent fE�; E0
�g are found, it is

straightforward to find all expansion coefficients, and
from them the EM fields in all space. For the total trans-
mittance through subwavelength holes, we find
T �

P
�Im��GV��

�E�
�E

0
�
=Y ~k0	0

.
We have tested our formalism against published results

for two extreme systems: a single circular hole [22] and a
square array of square holes [7]. In both cases we recover
the known results, showing that our method is free from
numerical instabilities and that, in finite systems, there
are no spurious effects related to the Lx; Ly ! 1 limit.

In the rest of this Letter we apply this formalism to the
study of linear chains of subwavelength circular holes
(see Fig. 1). For proof of principle purposes, we choose
holes with radius a=d � 0:25 perforated in a metallic
film of thickness h=a � 1, d being the first-neighbor
distance between holes. These are typical geometrical
values in experiments in 2D hole arrays (2DHA).
Figure 2(a) shows the evolution of the transmittance
versus wavelength as a function of the number of holes,
N [23]. The incident plane wave impinges normally, and is
polarized with the E field pointing along the direction of
the chain. For the other polarization, the boost in trans-
mittance is negligible. In Fig. 2(a), the total transmission
is normalized to the hole area and then divided by the
corresponding N. The most interesting feature of these
spectra is that, as N is increased, a transmittance peak
-2
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FIG. 1 (color online). A chain of circular holes in a metal film
with thickness h, with a schematic representation of the terms
appearing in the theoretical formalism presented in the text.
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emerges at . close to d, showing that enhanced trans-
mission is also present in linear chains of subwavelength
holes. The transmittance peak value, Tmax, grows almost
linearly with N (for small N) eventually reaching satura-
tion [see top inbox of Fig. 2(a)]. In order to gain physical
insight into the origin of this transmission resonance, it is
interesting to analyze a simplified model for the infinitely
long chain. In this model, only one mode per hole is con-
sidered: the least evanescent mode with the electric field
pointing mainly along the chain axis. Therefore, for all
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FIG. 2 (color). (a) Normalized-to-area transmittance (see
text) versus .=d for a linear array of N holes with a=d �
0:25 and metal thickness h � a. Top inbox: transmittance peak
value, as a function of N, dashed line showing the value
obtained for an infinite chain. Bottom inbox: normalized-to-
area transmittance versus .=d calculated for an infinite 2D hole
array with the geometrical parameters defining the 1D arrays.
(b) GS � � and GV (see text for the definition of these magni-
tudes) as a function of .=d.
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wavelengths, each hole behaves as a small dipole. In this
geometry, Bloch’s theorem implies E� � Eexp��kx�d�,
and E0

� � E0exp��kx�d�, which renders the system of
Eqs. (3) easily solvable. For the case we are considering
(normal incidence, kx � 0), this procedure yields

��GS � ��2 �G2
V
E � I�GS � ��; (5)

where GS � G�� 	
P
 ��G� , GV � GV�, and � � ��.

Figure 2(b) shows that the spectral location of the trans-
mittance peaks for the infinite chain coincide with the
cuts between jGS � �j and jGVj, implying that the origin
of EOT relies on a resonant denominator. Therefore, EOT
is associated, as in the case of 2DHA, to the excitation of
coupled surface EM resonances, which radiate into vac-
uum as they propagate along the surface. This is yet
another instance of surface EM modes (in this case a
leaky mode) appearing in a perfect conductor due to the
presence of an array of indentations [24]. The results for
finite chains [top inbox of Fig. 2(a)] show that this EM
resonance is characterized by a typical length, LD (for the
case considered LD � 80d) . When the size of the finite
chain is smaller than LD, the resonance is not fully
developed and the transmittance is smaller than the one
obtained for an infinite chain. However, for large enough
N, the system can effectively be considered as infinite and
its associated transmittance peak approaches the asymp-
totic value (with a 1=N contribution coming from holes
located at a distance � LD=2 from the chain ends). We
have found that LD is completely governed by the geo-
metrical parameter a=d, increasing as a=d decreases.

It is also interesting to compare the peak value calcu-
lated for an infinite linear array [T1D

max � 4; see Fig. 2(a)]
with the one obtained for an infinite 2D hole array with
the same geometrical parameters [T2D

max � 5; see bottom
inbox of Fig. 2(a)]. That is, when going from a linear
chain to a 2D hole array, the transmittance per hole is
only increased by 25%. This means that the basic unit of
the extraordinary transmission phenomenon observed in
2DHA is the linear chain of holes, and that the 2D hole
array can be considered as an array of weakly coupled 1D
arrays. We have checked that this conclusion remains
valid even for non-normal incidence, provided the in-
plane component of the incident E-field points along
the direction of the chain.

In order to study how the EOT in 2DHA develops from
the EOT in linear chains, we have calculated the trans-
mittance of a collection of finite linear chains separated
by a distance d. Figure 3 renders the normalized-to-area
transmittance versus wavelength for different stripes
formed by several (ranging from 1 to 1) chains of 41
holes. As shown in the figure, the strongest effect appears
when going from 41
 1 to 41
 3, suggesting that the
EM coupling between chains of subwavelength holes is
very short-ranged. The short-range nature of the inter-
chain interaction is more clearly seen in the inset to Fig. 3,
which renders the transmission peak value, Tmax, through
-3
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FIG. 3 (color). Normalized-to-area transmittance versus .=d
for several stripes formed by M linear chains of 41 holes with
a=d � 0:25 and h=a � 1. M varies from 1 to 5. Also, the limit-
ing case ofM�1 is presented. Inset: transmittance peak value
for the case of two linear chains (each one of them with the
same parameters as before), as a function of their distance, dc.
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two finite linear chains as a function of the distance
between them, dc. As this inset shows, for this set of
geometrical parameters, the chains are already practi-
cally uncoupled when dc � 3d, the maximum coupling
being for dc � d.

When linear chains are added up to the structure, the
transmittance peak shifts to longer wavelengths and its
maximum value increases. The increase in transmittance
is due to the fact that each chain takes advantage from the
reillumination coming from other chains. The peak red-
shift is related to the corresponding decrease of frequency
of the stripe surface EM mode, due to a reduction of its
lateral confinement. More precisely, in this case, the stripe
surface mode that couples to the incident plane wave with
~k � 0 is essentially the sum, with equal phases, of the
single chain leaky modes. In infinite 2DHA, two EOT
peaks originate from the resonant coupling (via the holes)
of the surface EM modes, with a narrow transmission
peak appearing close to . � d (see bottom inbox of
Fig. 2). Notice that in stripes of chains of finite length,
only one peak is clearly resolved, the second expected
peak appearing as a shoulder in the transmission curve
(see Fig. 3). This suggests that finite-size effects may pre-
vent the development of the narrowest peaks. Interest-
ingly, the addition of linear chains also provokes the birth
of a minimum in the transmittance spectrum, appearing
at a wavelength slightly smaller than d. Eventually, in
2DHA, this minimum leads to a ‘‘Wood’s anomaly,’’
appearing just when a propagating Bragg diffracted
wave becomes evanescent. In this case the reciprocal
lattice vectors involved are ��1; 0�2+=d, and Wood’s
anomaly appears due to a divergence in the EM density
of states corresponding to those wave vectors. Notice that,
in a linear chain, as the diffracted field contains a con-
tinuum of ky components, the divergence in the density of
227401
states is smeared out; correspondingly, no Wood’s anoma-
lies appear in this case.

To summarize, we have found that EOT phenomena are
already present in a single finite chain of subwavelength
holes in a metallic film. For a chain, the transmittance per
hole is comparable to that found in 2D arrays; therefore,
the single chain can be considered as the basic entity of
EOT and then 2D arrays can be seen as a collection of
weakly EM coupled chains. As a by-product, we have
developed a new theoretical framework that is able to
treat the optical properties of even thousands of indenta-
tions (holes or dimples) placed arbitrarily in a metallic
film.
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