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We introduce a picture to analyze the density matrix renormalization group (DMRG) numerical
method from a quantum information perspective. This leads to a variational formulation of DMRG
which allows for dramatic improvements in the case of problems with periodic boundary conditions.
The picture also explains some features of the method in terms of entanglement and teleportation.
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The discovery and development of the density matrix
renormalization group (DMRG) method [1,2] to treat
quantum many-body systems has enabled us to analyze
and understand the physical properties of certain con-
densed matter systems with unprecedented precision [3].
Originally envisioned for 1D systems with short-range
interactions at zero temperatures, during the last few
years this method has been successfully extended to other
situations [3]. Its mathematical foundations have been
established [4,5] in terms of the so-called matrix product
states (MPS) [6] and by now there exists a coherent
theoretical picture of DMRG.

At the same time, the field of quantum information
theory (QIT) has emerged to describe the properties of
quantum many-body systems from a different point of
view. A theory of entanglement has been established and
has allowed us to describe and understand phenomena
like teleportation [7] and to use them in the fields of
communication and computation [8]. Recently it has
been shown that QIT may also shed some new light on
our understanding of condensed matter systems [9–11]
and, in particular, on the DMRG method [12,13].

In this work we analyze the standard DMRG method
using a physical picture which underlies QIT concepts.
The picture has its roots in the AKLT (Affleck, Kennedy,
Lieb, and Tasaki) model [14] and allows us to understand
why DMRG offers much poorer results for problems with
periodic boundary conditions (PBC) than for those with
open boundary conditions (OBC), something which was
realized at the origin of DMRG [2]. It also gives a natural
way of improving the method for problems with PBC, in
which several orders of magnitude in accuracy can be
gained. The importance of this result lies in the fact
that physically PBC are strongly preferable over OBC as
boundary effects are eliminated and finite size extrapo-
lations can be performed for much smaller system sizes.

Let us start by reviewing the simplest version of the
DMRG method for 1D spin chains with OBC, involving a
left block spin, a single physical spin, and a right block
spin, typically represented as B � B [2,15]. We denote by
d the dimension of the Hilbert space corresponding to
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each spin, and by D the number of states kept by the
DMRG method. We assume that the spins at the edges
have dimension d0 � D [16]. At some particular step the
chain is split into two blocks and one spin in between. The
left block (L) contains spins 1; . . . ;M� 1, and the right
one (R) spinsM� 1; . . . ; N. Then a set ofD�D matrices
As are determined such that the state

j�i �
Xd

s�1

XD

�;��1

As�;�j�iL 	 jsiM 	 j�iR; (1)

minimizes the energy. The states j�iL;R are orthonormal
and have been obtained in previous steps. They can be
constructed using the recurrence relations

j�iL �
XD

�0�1

Xd

s�1

U�M�1�;s
�;�0 jsiM�1 	 j�0iL0 ; (2)

where the block L0 contains the spins 1; . . . ;M� 2. The
new matrices U�M�;s are determined from As and fulfill

Xd

s�1

U�M�;s
U�M�;s�y � 1: (3)

For the blocks consisting of the edge spins alone, the j�i
are taken as the members of an orthonormal set.

In order to give a pictorial representation of the above
procedure we introduce at site M two auxiliary D-level
systems, aM and bM. The corresponding Hilbert spaces
Ha;b are spanned by two orthonormal bases j�ia;b, re-
spectively. We take L and aM (and also R and bM) in the
(unnormalized) maximally entangled state

j�i :�
XD

��1

j�i 	 j�i: (4)

We can always write j�i � PMj�iL;aM j�iR;bM , where PM
maps Ha 	Hb ! HM, with HM the space corresponding
to the Mth spin and [cf. (1)]

PM �
Xd

s�1

XD

�;��1

As�;�jsih�;�j: (5)
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In fact, we can proceed in the same way at any other site
k � 1;M;N by defining two auxiliary systems ak and bk
and a map Qk defined as in (5) but with the matrices U
instead of the A. For the edge spins one and N we define a
single auxiliary system b1 and aN , respectively, and de-
fine accordingly the operators Q1;N which now map
Hb;a ! H1;N . Thus, the state � is then obtained by apply-
ing the operators Q1; . . . ; PM; . . . ; QN to the set of maxi-
mally entangled states � between the auxiliary systems
bk and ak�1 (k � 1; . . . ; N � 1) [see Fig. 1(a)].

The DMRG procedure can be now represented as fol-
lows. For fixed projectors Qi�M, the energy is a quadratic
function in the variables PM and hence the optimal PM
(given fixed Qi�M) can be found by solving an eigenvalue
equation. From PM, one obtains the operatorQM and goes
to the next step at location M� 1. One proceeds in the
same way, moving to the right, until one reaches the
location N. At that point, one starts moving to the left
until one reaches location 1 at which point it moves again
to the right. The procedure is continued until a fixed point
for the energy is reached, something which always occurs
since the energy is a monotonically decreasing function
of the step number. This proves that DMRG with the B �
B is a variational method which always converges: the
variational class of states over which is optimized is the
class of MPS with open boundary conditions.

The more standard scenario (B � �B) is represented in
Fig. 1(b). The operator PM acts on the auxiliary subsys-
tems aM and bM�1 and maps Ha 	Hb ! HM 	HM�1. In
this picture [for both configurations, Figs. 1(a) and 1(b)] it
is very clear that the two edge spins are treated on a very
different footing since they are represented by a single
auxiliary system which are not entangled to any other.
...1b 2b2a NaMP

2Q 1MQ + 1NQ −1MQ −

1Mb −1Ma − 1Mb +1Ma + 1Nb −1Na −

1b 2b2a Na1MP +

2Q MQ 1NQ −1MQ −

MbMa 1Nb −1Na −1Mb −1Ma −

...

... ...

1b
2b2a NaMP

2Q 1NQ −1MQ −

1Nb −1Na −1Mb −1Ma −... ...

...1b
2b2a Na1MP −

2Q 1MQ + 1NQ −

1Mb +1Ma + 1Nb −1Na −...

(a)

(b)

1Q
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FIG. 1. Schematic picture of the DMRG method for the
B � B (a) and the B � �B (b) configurations. Horizontal lines
represent maximally entangled states j�i, the ellipses and
circles (squares) the operators Q (P) which map the auxiliary
system into the physical ones.
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In the case of a problem with PBC a slight modification
of the scheme is used [2]. The idea is to still separate the
system into two blocks and two spins as before but now
with the configuration B � B � . This ensures the sparse-
ness of the matrices one has to diagonalize and thus it
increases the speed of the algorithm [2]. One can draw the
diagram corresponding to this procedure in a similar way
as in Fig. 1. The important point is, however, that the
variational class of states over which is optimized is still
the class of MPS with open boundary conditions. In our
opinion, this is the reason of the poor performance of the
DMRG method for problems with PBC.

The method we propose for the case of PBC is very
clear in terms of this picture (Fig. 2): we replace the
variational class of states to the MPS with periodic
boundary conditions. One has to substitute at all sites k
the spin by two auxiliary systems ak and bk of dimension
D, with bk and ak�1 (with aN�1 :� a1) in a maximally
entangled state and find the maps Pk: Ha 	Hb ! Hk
which lead to a state

j�i � P1 	 P2 � � �PN�1 	 PNj�i	N; (6)

with the minimal energy. This minimization can be per-
formed in a similar way to the one used in the standard
DMRG method: for fixed Qi�M, the energy and the nor-
malization of the state are a quadratic function of PM, and
hence the optimal PM can be determined through solving
a generalized eigenvalue problem. Before showing how to
do this in practice, we derive some formulas in terms of
these operators. We write

Pk �
Xd

s�1

jsih’�k�
s j; h’�k�

s j �
X

�;�

B�k�;s
�;� h�;�j: (7)

Thus, the problem is solved once the states ’ (or equiv-
alently, the matrices B) are determined. Note that starting
from these states, it is possible to calculate expectation
values of products of local observables [4], since

h�jO1 � � �ONj�i � Tr
E�1�
O1

� � �E�N�
ON

�; (8)

where

E�k�
O �

Xd

s;s0�1

hsjOjs0iB�k�;s 	 
B�k�;s��: (9)

Thus, the main idea to perform the minimization is very
simple. Given the Hamiltonian H describing the system,
...1b 2b2a NaMP

2Q 1MQ + 1NQ −1MQ −

1Mb −1Ma − 1Mb +1Ma + 1Nb −1Na −... Nb1a

clockwisecounterclockwise

1Q NQ

FIG. 2. Proposed configurations for the case of PBC. One
may also use two spins instead of one.
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FIG. 3. Left: comparison between DMRG (squares) [2] and
the new method (circles) for PBC, and N � 28. For reference
the DMRG results [2] for the Heisenberg chain with OBC
(triangles) are also shown. Inset: variation of the local bond
strength from the average along the chain, calculated with the
new method and D � 40.
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one chooses one site M and writes the energy as

E �
h�jHj�i

h�j�i
�

h �M�jHMj 
�M�i

h �M�jNMj �M�i
; (10)

where j �M�i � �sj 
�M�
s i is a vector built by concatenating

the  �M�
s , and NM and HM are d�D2 Hermitian square

matrices which are built using the vectors  �k�
s at k � M.

For example, NM � �sN0 is a block diagonal matrix with
identical blocks N0 which has matrix elements

N0�
�;�0�;
�;�0� � 
 ~N0�
�;��;
�0;�0�, with

~N 0 � E�M�1�
1 � � �E�N�

1 E�1�
1 � � �E�M�1�

1 : (11)

Thus, at this step the operator PM is found by solving the
generalized eigenvalue problem

HMj �M�i � �NMj �M�i; (12)

with � minimum, which in turn gives the energy at this
step. Then one chooses another site and proceeds in the
same way until the energy converges. At the end we have
all the Pk and can evaluate all expectation values.

Let us now explain how one can make the method
efficient. Let assume that we have a set of spins in a
ring. The idea is to determine operators Pk in a clockwise
order (first P1, then P2, until PN�1), then improve them
following a counterclockwise ordering (from PN to P2),
then again clockwise, until the fixed point is reached. At
each step, a normalization condition similar to (3) is
imposed, depending on whether we are in a clockwise
or counterclockwise cycle, which makes the matrix NM
well behaved. On the other hand, at each step only the
operators which are strictly needed in later steps are
calculated in an efficient way and stored.

The normalization condition is based on the following
fact. Given the state �, characterized by matrices B, if we
substitute B�M�;s ! B�M�;sX :� U�M�;s and B�M�1�;s !

X�1B�M�1�;s, where X is a nonsingular matrix, we obtain
the same state. Analogously, we can substitute B�M�;s !

YB�M�;s :� V�M� and B�M�1�;s ! B�M�1�;sY�1. We choose
X in the clockwise cycles to impose (3) and Y in the
counterclockwise ones to impose

Xd

s�1


V�M�;s�y
V�M�;s� � 1: (13)

Thus, at the point of determining the operator PM,

j�i�Q1	���QM�1	PM	 ~QM�1 ���	 ~QNj�i	N; (14)

where Qk and ~Qk are defined as in (7) but with U and V
instead of B, respectively. Thus, the operators X and Y are
all of them moved over, such that they are now included
in those corresponding to PM. It can be easily shown that
these conditions on the operator U (V) are equivalent to
imposing that E1 has the maximally entangled state j�i
as right (left) eigenvector with eigenvalue 1. This is
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immediately reflected in the fact that the matrix NM is
better behaved, which makes the problem numerically
stable.

Let us now illustrate how the procedure works with
simplest nearest-neighbor Hamiltonian  �k�

z  
�k�1�
z ,

namely, the Ising model. Let us assume that we are
running the optimization of the operators clockwise and
that we want to determine PM. So far, in previous steps,
apart from the matrices U and V, we have stored (i) for
each k <M, the following four operators:

rk :� E�1�
1 E

�2�
1 � � �E�k�2�

1 E�k�1�
1 ; (15a)

sk :� E�1�
 zE

�2�
1 � � �E�k�2�

1 E�k�1�
1 ; (15b)

tk :� E�1�
1 E

�2�
1 � � �E�k�2�

1 E�k�1�
 z ; (15c)

hk :�
Xk�2

n�1

E�1�
1 E

�2�
1 � � �E�n�

 z E
�n�1�
 z � � �E�k�2�

1 E�k�1�
1 ; (15d)

and (ii) for each k >M other four similar operators which
contain products from E�k� to E�N�. With them, one can
build HM and N0 by few matrix multiplications and thus
determine PM by solving (12). From it,QM is determined.
Then, we construct rM�1, sM�1, tM�1, and hM�1 starting
from rM, sM, tM, and hM. We continue in the same vein,
finding four matrices at each step, and storing them, until
we reach N. Then we start moving counterclockwise and
start constructing the corresponding four matrices at
each step. Notice that in order to construct the matrices
HM and N0 we have to use the stored matrices (15) which
were determined when we were moving clockwise. Thus,
with this procedure we have to store of the order of 4N
matrices of dimension D2. Using sparse matrix multi-
plications to solve the eigenvalue problem [17] and to
update the matrices rM; sM; tM; hM, the number of opera-
tions per step scales asD5 and is independent of N. At the
end, when we have reached the fixed point, we can deter-
mine the expectation value of any operator by using (8)
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and determining the required matrices using (9). Note
that after convergence with D fixed, D can be increased
by adding zeros to all projectors plus some additional
noise term.

We have applied the above method to the spin 1=2
Heisenberg chain. We have plotted in Fig. 3 the energies
obtained as a function of D and compared them with
those obtained by the standard DMRG method with
OBC and PBC. From the figure it is clear that the accu-
racies we obtain are comparable with those obtained with
DMRG for problems with OBC but much better than for
PBC. We have determined the errors by comparing with
the exact results [18]. In the inset of Fig. 3 we have plotted
the local bond strength hS�k�S�k�1�i as a function of k. The
result is practically independent of the position k, as
opposed to what occurs with OBC.

Finally we show that the picture introduced here may
be valuable to understand the properties of states � in
terms of the language and tools developed in the field of
QIT. First, one can easily see that the entropy of the block
formed by systems 
k0; k0 � 1; . . . ; k1� is bounded by
2log2
D�, as this block is connected to the rest only via
ak0 and bk1�1, and thus the rank of the reduced density
operator for the block is bounded by the product of the
dimensions of the corresponding Hilbert spaces. Second,
the concept of teleportation allows us to show that any
state can be written in the form (6) (MPS [4,6]) if we
choose D � dbN=2c. As an example, consider a general
state j i of five qubits and a MPS with bonds consisting
of one or two maximally entangled states (Fig. 4).
Assume the third particle consists of nine virtual parti-
cles [19], of which five are in the state j i while the other
ones are part of maximally entangled states with the
virtual particles of the neighbors. Virtual measurements
of the form M � h00j � h11j on the pairs of qubits

1; 10; 2; 20; 4; 40; 5; 50� effectively teleport the virtual qu-
bits 1, 2, 4, 5onto 100; 200; 400; 500 of the neighboring parti-
cles. There a similar measurement can be done to teleport
the qubits 100; 500 to their final destination, hence creating
the actual state j i on the five remaining physical qubits.
The actual projectors P defining the MPS can immedi-
ately be read off from this picture, hence yielding a
constructive way of representing any state as a MPS.
Finally, we note that the usefulness of the MPS relies in
the fact that, for translational invariant problems, the set
of possible nearest-neighbor reduced density operators of
MPS with small D already gives a very good approxima-
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tion to the convex set of all possible ones arising from
general translational invariant states.

In summary, we have shown that DMRG can be for-
mulated as a variational method for minimizing the
energy over the set of matrix product states. We have
given a pictorial view of the DMRG method and identi-
fied the reason of its poor performance for problems with
PBC. Our picture immediately leads to a modified version
of the DMRG method which dramatically improves the
results. This is done at the expense of no longer using
sparse matrices. We believe that the method may allow us
to treat problems in condensed matter systems which so
far have been difficult to tackle with the standard DMRG
method. In any case, the present work illustrates how the
developments made in QIT during the last few years may
prove useful in other branches of physics.
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