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We show that the nonlinear /-V characteristics of mesoscopic samples with metallic conductivity
should contain parts which are linear in the magnetic-field and quadratic in the electric field. These
contributions to the current are entirely due to the electron-electron interaction and consequently they
are proportional to the electron-electron interaction constant. We also note that both the amplitude and
the sign of the nonlinear part of the current exhibit random oscillations as a function of temperature.
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According to Onsager, the linear conductance G(H) of
a conductor measured by the two-probe method must be
an even function of the magnetic-field H [1]:

G(H) = G(—H). ey

Equation (1) is a consequence of general principles: the
time reversal symmetry and the positive sign of the
entropy production. Therefore, it holds in all conductors.
It is possible, however, that the nonlinear /-V character-
istics of conductors contain parts odd in H. In particular,
one can have contributions to the total current through a
sample, which are linear in H and quadratic in the voltage
across the sample V:

I(nl) = aV?H. 2)

Since H is an axial vector and the current is a polar one,
the coefficient a can be nonzero only in noncentrosym-
metric media. In the case of bulk noncentrosymmetric
crystals, terms in /-V characteristics that are linear in H
have been investigated both theoretically, by using
Boltzmann kinetic equation, and experimentally (see,
for example, Ref. [2]). In the case of chiral carbon nano-
tubes, a classical theory of this effect was discussed in
Ref. [3].

In this Letter we study this effect at small temperatures
and in mesoscopic disordered samples, where all possible
symmetries are broken. In this situation, all electron
transport effects have quantum interference nature. The
theory of nonlinear characteristics of mesoscopic metal-
lic samples was developed in the approximation of non-
interacting electrons [4,5]. It is important, however, that
in this approximation o = 0 and magnetic-field depen-
dence of the /-V characteristics is an even function of H.
Therefore, the coefficient @ in Eq. (2) should be propor-
tional to the electron-electron interaction constant f3,
which is defined by the interacting part of the electron
Hamiltonian
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Hiny = g f AW () W (1) (0) W (x). 3)

Here v is the electron density of states. Thus, in principle,
by measuring the current in Eq. (2) one can measure the
electron-electron interaction constant .

Let us consider a two-dimensional sample shown in the
insert of Fig. 1 and assume that the magnetic field is
perpendicular to the plane and that the characteristic
size of the sample L >> [ is much larger then the electron
elastic mean free path /. At low temperatures the main
contributions to both mesoscopic fluctuations of the con-
ductance 6G = G — (G) and the nonlinear current Eq. (2)

FIG. 1.  Solid lines correspond to electron Green’s functions;
thin dashed lines correspond to the correlation function of the
random scattering potential (u(r)u(r’)); thick dashed lines
correspond to the electron-electron interaction B/v. Symbols
E, J, n correspond to electric field, current density, and electron
density, respectively. Diagrams (a) and (b) describe the corre-
lation function (G(H)G(0)). Parallel and antiparallel directions
of arrows in the ladder parts of these diagrams correspond to
the Cooperon and Diffusons, respectively. The diagram (c)
describes (I(an)> in the case when B = 0. The diagram (d)
describes Egs. (4), (12), and (13). The insert shows a schematic
picture of the sample.
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are due to electron interference effects. As usual in such
situations, « is a random sample-specific quantity with
zero average (a) = 0. To characterize « one has to calcu-
late the variance (). Here the brackets ) denote averag-
ing over realizations of a random white noise scattering
potential characterized by a correlation function
(u(r)u(r’)) = ;% 6(r — '), where m is the electron mass.

A diagrammatic verification of Eq. (1) in the situation
when interference corrections to conductance are signifi-
cant is not entirely trivial. One has to show that the
correlation function of conductances (8G(H)8G(0)) is
an even function of the magnetic field. This involves
calculation of diagrams shown in Fig. 1(a) and 1(b)
[6]. We will use a standard diagrammatic technique for
averaging over random realizations of the scattering po-
tential [7]. The correlation function of “Diffuson” and
“Cooperon” propagators are represented by the ladder
diagrams in Fig. 1(a) and 1(b). The Diffuson is the ladder
part of the diagram in Fig. 1(a) where the direction of
arrows of the electron Green function is antiparallel,
while the Cooperon is the ladder in Fig. 1(b) with parallel
directions of the arrows. They contain parts linear in the
magnetic field, which are equal in magnitude and of
different signs. Thus these contributions to the total cur-
rent through the sample cancel. To verify that &« = 0 in
the approximation of noninteracting electrons, one has to
calculate diagrams for ((/(,;))*) shown in Fig. 1(c). In this
case, Diffuson and Cooperon contributions linear in H
cancel each other as well. The fact that « = O when 8 = 0
is also quite obvious in the framework of the Landauer
scheme of the conductance calculation.

In the approximation linear in S the variance

oo © (CV(LY
(@) =5 v2F4A2(h><CI)O> @)

is given by diagrams shown in Fig. 1(d). Here I' = AD/L?
and D/L? is the inverse lifetime of an electron in the
sample, A is the area of the sample, and D = vl/2 is the
electron diffusion coefficient. Equation (4) is valid when
eV < T and ® <« ®(, where ® = HA and P are the
magnetic flux through the sample area and the flux quan-
tum, respectively. For simplicity we consider the short
range e-e interaction described by Eq. (3). In this case the
Hartree term is two times larger than the exchange term
and we consider only the diagram shown in Fig. 1(d).

In the case of the Coulomb interaction between elec-
trons at high electron densities we have

B =érpy, &)

where rp is the electron screening radius. To get Eq. (5)
one has to calculate diagrams shown in Fig. 61 in Ref. [7].

The effect described by Eq. (4) is quite different from
conventional effects in bulk crystals which can be de-
scribed by the Boltzmann kinetic equation [2,3]. The
latter effects are determined by relaxation processes in

materials with complicated band structures and for this
reason they are proportional to the relaxation rates (or
proportional to 8?), while Eq. (2) is proportional to 3.

The qualitative explanation of Eq. (4) is the following.
The mesoscopic fluctuations of the current density inside
the sample are due to random interference of electron
waves traveling along different diffusive paths. Though
the total current through the sample should be an even
function of H, the local current densities contain a part
proportional to H. For example, the part of the current
density proportional to H can be characterized as a ““Hall
current density.” To avoid confusion, we would like to
mention that this “Hall component™ is connected with
the electric field in a highly nonlocal way and has a
random direction. By the same token, in random system
there is a part of electron density

on(r) ~ VH, (6)

which is proportional to H and V [8]. Existence of fluc-
tuations of the density of the form Egq. (6) is a conse-
quence of the fact that contributions linear in H of
diagrams Fig. 1(a) and 1(b) to dn(r) do not cancel. For
our estimate it is enough to consider only Diffuson
contribution.

We note also that density fluctuations Eq. (6) are differ-
ent from Friedel oscillations in disordered samples,
which are an even function of H. In the Hartree approxi-
mation there is an additional scattering potential

B

ou,(r,V,H) = —
u (e, V. H) =

én(r,V, H) @)
associated with the fluctuations of the electron density.
Thus we can write an expression for a nonlinear part of
the total current through the sample in the form

I(nl) = G(l’ll)[V? T! H’ {81"6(1‘! V) H)}]V) (8)

where the nonlinear conductance G, generally speak-
ing, depends on the realization of u,(r). It can be regarded
as linear conductance at given Su,(r).

The sensitivity of the sample conductance to a change
in the scattering potential du,(r) has been considered in
[9,10]. Generally speaking, the mesoscopic part of the
conductance G,; — (G(,;) depends on all spatial har-
monics of du,(r). However, the main contribution to the
change of the conductance comes from zero harmonics of
the potential

5, (V, H) = VﬁA f Sn(x, V, H)dr. ©)

This can be verified by making calculations similar to
those in [11]. This is also related to the long range char-
acter of the correlation function of the part of the electron
densities, which are proportional to V [8]. A Ju,(r)
dependence of (G, is due to the energy dependence of
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the electron mean free time. This dependence is small and
can be neglected.

Expanding Eq. (8) in terms of i, and taking into
account that in the main approximation i, and G, are
uncorrelated, we get

<I(2nl)> = <(dG(nl)/dﬁe)2><ﬁZ>V2 (10)

According  to  [10] ((dG,,/di,)*) = (e*/h)*/T?.
Calculating the correlation function
B> 1 @ |ev|?

{[oa.(H,V)P) ="5 1 o, T

Y

we arrive at Eq. (4).

At this point we would like to mention that on a
qualitative level the effect considered above can be also
described in the framework of the Landauer scheme. To
do so one has to combine results of [12,13].

Equation (4) is valid at small temperatures I' > T. At
finite temperature, the quantity (a*(T)) decreases with 7.
AtT>T,

2 2 F2
(@(T)) ~(a(0)) 5. (12)

We stress that the temperature dependence of «(T) is
nonmonotonic: a(7T) exhibits random oscillations in mag-
nitude and sign, superimposed on the average decay. One
can see this by calculating the quantity

1'*2
(a(T)a(0)) ~ <a2(0)>ﬁ. (13)

Note that Eqgs. (12) and (13) have the same temperature
dependence, which is impossible without oscillations of
the sign of a(T) [14]. In case of monotonic «(T) depen-
dence, one would expect that (a(T)a(0)) ~ 1/T.

In the case of high magnetic-field ® > &, (but still
eV <« T), the part of the current which is asymmetric in
H and quadratic in V exhibits random oscillations as a
function of ®. These oscillations, typical for mesoscopic
systems, have a characteristic period ®, and the ampli-

tude
1 e2V\2
(7)) 0¥

Finally, we mention that there are no mechanisms
contributing to Eq. (2) other than the mechanism consid-
ered above. For example, at finite V there is a new channel
of electron transmission through the sample when an
incident electron is transmitted into two electrons and a
hole. The probability of such a process has a component
which is linear in H. Its magnitude can be estimated in a
way similar to estimating the electron-electron scatter-
ing rate of quasiparticles in a uniform Fermi liquid. As a
result, this component is proportional to V2. Thus the

@ ~ 1P = B

magnitude of the asymmetric-in-H part of the current
associated with such process is proportional to V3 H.

The effect discussed above was recently observed ex-
perimentally in GaAs quantum dots [15]. During the
preparation of the manuscript we became aware of simi-
lar unpublished results by Sanchez and Biittiker [16].
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