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Spin Current and Polarization in Impure Two-Dimensional Electron Systems
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We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit
interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain
coupled diffusion equations for the electron density and spin. Using these equations we calculate
electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio
between spin-orbit energy splitting � and elastic scattering rate ��1. We demonstrate that the spin-Hall
conductivity vanishes in an infinite system independent of this ratio.

DOI: 10.1103/PhysRevLett.93.226602 PACS numbers: 72.25.–b, 73.23.–b, 73.50.Bk
Introduction.—The subject of the novel and quickly
developing field of spintronics is the transport of elec-
tronic spins in low-dimensional and nanoscale systems. A
possibility of coherent spin manipulation represents an
ultimate goal of this field. Typically, spin transport is
strongly affected by a coupling of spin and orbital degrees
of freedom. The influence of the spin-orbit interaction is
twofold. The momentum relaxation due to diffusive scat-
tering of carriers, e.g., by disorder, inevitably leads to spin
relaxation and destroys spin coherence. On the other hand,
the controlled orbital motion of carriers can result in a
coherent motion of their spins. Thus, spin-orbit coupling
is envisaged as a possible tool for spin control in elec-
tronic devices. In particular, it is possible to generate spin
polarization and spin currents by applying electric field,
the phenomenon known as the spin-Hall effect.

Although the study of the spin-Hall effect recently
evolved into a subject of intense research [1–11], the issue
remains highly controversial. Sinova et al. [2] have pre-
dicted that in a clean, infinite, homogeneous two-
dimensional electron system (2DES) the spin current ĵik�
1
4f�̂i;v̂kg develops a nonzero expectation value under an
external electric field E. (Here 1

2 �̂ and v̂ are the operators
of the electron spin and velocity, respectively.) The spin-
Hall conductivity, defined as the ratio �sH � �jzy=Ex,
was predicted to have a universal value �sH � e

8� , inde-
pendent of the magnitude of the spin-orbit energy split-
ting �. The effect of impurity scattering on a spin current
has been discussed in Refs. [4,9,10]. References [4,10]
show that the spin-Hall conductivity disappears in the
dirty limit � � ��1, reaching the universal value only
for a sufficiently clean regime, � � ��1. The clean re-
gime has been analyzed by Inoue et al. [9], who argued
that the spin current completely disappears due to vertex
corrections. Recently, Dimitrova [11] obtained the uni-
versal value independent of the relation between the spin-
orbit splitting � and the impurity scattering rate.

Because the spin current is not measurable directly, its
physical meaning is obscure. In the presence of spin-orbit
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interaction, electron spin is not a conserved quantity, and
a spin current is not directly related to the transport of
spins. In particular, Rashba [8] demonstrated that spin
current can be nonzero even in equilibrium, as the sym-
metry of an isotropic spin-orbit Hamiltonian allows non-
zero in-plane currents jxy � �jyx � 0. A more meaningful
quantity is spin polarization (spin accumulation) rather
than a spin current. Equilibrium currents do not lead to
spin accumulation. It remains unclear whether the pre-
dicted nonequilibrium spin-Hall currents jzy accumulate
near sample boundaries. Bulk polarization has been
studied in both the three-dimensional [12] and two-
dimensional [13] electron systems in the electric field.

In this Letter, we develop a consistent microscopic
approach to spin transport in impure 2DES. We derive a
quantum kinetic equation which describes the evolution
of a density matrix of a noninteracting 2DES. For length
scales exceeding the mean free path, this equation re-
duces to a modified diffusion equation. We then compute
spin polarization and spin current in a general situation
when the finite-size system is driven out of equilibrium by
an external electric field as well as by the density gra-
dient. We find that the spin current actually vanishes in an
infinite system for arbitrary ��.

However, in a mesoscopic conductor connected to two
massive metallic contacts, nonequilibrium spin currents
jzy flow in the vicinity of the contacts (as shown in Fig. 1).
A nonzero spin-Hall effect can also be achieved in an
infinite system by applying a finite frequency electric
field. We evaluate the ac spin-Hall conductivity, which is
maximal for a frequency of order of the spin-relaxation
rate. This result is instructive for making a connection
with previous works and clarifying the ‘‘universality’’
issue of the spin-Hall conductivity.

Kinetic equation.—Noninteracting electrons in an
asymmetric quantum well can be described by a single
particle Hamiltonian

H � �p� eA�t	
2=2m� ��̂ � �p� eA�t	
 �Ui; (1)
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FIG. 1 (color online). In a spin-Hall bar setup, the electric
current is driven through 2DES contacted by the metallic leads
connected to a voltage source. The electric field Ex creates an
in-plane spin polarization Sy in the bulk. Spin currents jzy are
running in the vicinity of the contacts while vanishing in the
bulk. Out-of-plane polarization Sz is accumulated at the sample
corners.
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where p � �i �hr is electron momentum, m is the effec-
tive mass, A�t	 is a vector potential of the uniform
electric-field E � � _A, and �̂ is proportional to the elec-
tron spin operator. (We neglect terms cubic in p.) The
disorder potential Ui is assumed to be random, short
range, and spin independent. For the isotropic
(‘‘Rashba’’) spin-orbit interaction [14], �̂ � z �̂, where
�̂ are the Pauli matrices. To describe a nonequilibrium
state of the system, we use the Keldysh approach [15]. We
introduce the retarded and advanced Green’s functionsGR

and GA, and Keldysh function GK satisfying Dyson’s
equation

�Ĝ�1
0 � 
̂	Ĝ � 1; Ĝ �

�
ĜR ĜK

0 ĜA

�
: (2)

Here the lower bar denotes a matrix in Keldysh space,
Ĝ�1

0 � i@t � Ĥ, and � � m
2� is a density of states per spin
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direction. Neglecting weak-localization effects, one can
relate the self-energy 
̂ to the Green’s function Ĝ by a
standard disorder averaging technique [16], 
̂ � �xx0 

Ĝ�x;x	=m�. We consider only the limit where ��1 and �
are small compared to the Fermi energy p2

F=2m. In the
absence of electron-electron interactions, functions ĜR

and ĜA are independent of the nonequilibrium state of the
system. In the Fourier representation, they are given by

Ĝ R;A
p" �

1

!� "p � �p#̂p �
i
2�

: (3)

Here "p � �p2 � p2
F	=2m is the kinetic energy counted

from the equilibrium chemical potential, �p � �p is the
energy of the spin-orbit splitting, and #̂p � �̂ � p=p is the
projection of the spin operator �̂ onto the direction of the
electron momentum. The Keldysh function ĜK satisfies
the equation

�ĜR
�1ĜK � ĜK�ĜA
�1 � 
̂KĜA � ĜR
̂K: (4)

It is now customary to apply theWigner transformation to
Eq. (4), i.e., the Fourier transform with respect to the
relative time and space arguments,

Ĝ K�t�x�;t�x�	�
i
�

Z d"d2p

�2�	2
ĝp"�t;x	ei�p�eA�t	
�x�i"�t;

(5)

where t� � t� �t and x� � x� �x=2. In the semiclas-
sical approximation, the Wigner transform of the right-
hand side of Eq. (4) can be replaced by a product of the
Wigner transforms of 
 and G:
@ĝp"
@t

�
1

2

�
p
m
� ��; ~rĝp"

�
� i���̂ � p; ĝp"
 � �

ĝp"
�

�
i
�
�ĜR

p"&̂! � &̂!Ĝ
A
p"	; (6)
where ~r � r� eE@", and

&̂ " �
1

2��

Z d2p

�2�	2
ĝp" (7)

is the density matrix of electrons with the energy ". The
total number of particles and their total spin can be
expressed via &̂" as follows:

N � Tr�
Z
d"&̂"; S �

1

2
Tr�

Z
d"�̂&̂": (8)

In the limit � ! 1 Eq. (6) reduces to the ballistic equa-
tion of Ref. [17]. Note, however, that the function ĝp! is
not a distribution function in the conventional sense,
since it depends on both energy and momentum.

A stationary solution to the quantum kinetic Eq. (6) is
of the form ĝp" � A"�Ĝ

R
p" � ĜA

p"	, where A" is an arbi-
trary scalar function of the electron energy ". This solu-
tion represents the state in which the charge density is
uniform, and spin density is zero. In a nonequilibrium
state with the characteristic length scales of the spin and
charge densities exceeding the electron mean free path
l � vF�, the distribution ĝp" relaxes slowly to equilib-
rium. To describe this relaxation, we derive the equation
for the density matrix &̂"�r; t	. It is useful to move small
gradient terms to the right-hand side of the kinetic
Eq. (6), so that its left-hand side describes fast relaxation
to the local equilibrium distribution:

�@t � ��1	ĝp" � i�p�#̂p; ĝp"
 � K̂p" � K̂�0	
p" � K̂�1	

p";

(9)

where

K̂
�0	
p"�&̂"
 � i��1�ĜR

p"&̂" � &̂"G
A
p"
;

K̂�1	
p"�ĝp"
 � �

1

2

�
p
m
� ��̂; ~rĝp"

�
:

(10)

Small anisotropic deviations from local equilibrium are
due to the gradient term K̂�1	

p" in the kinetic equation
which can be treated perturbatively. The solution to
Eq. (9) can formally be written (in the Fourier represen-
-2
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tation with respect to time) as

ĝp"� i
�2�2

p��2	K̂p"�2�2
p#̂pK̂p"#̂p���p�#̂p;K̂p"


��4�2
p��2	

�L�K̂p"
; (11)

where � � !� i=�. In a zeroth order, one can neglect
the gradient term K̂�1	

p" altogether, so that Eq. (11) gives

the distribution ĝ�0	p" in terms of the density matrix &̂". In
the first order, we substitute the obtained expression for
ĝ�0	p" in the gradient term K̂�1	

p" to obtain an improved

expression for the distribution function, ĝ�1	p". This proce-
dure is then to be repeated to the necessary order,

ĝ�0	p" � L�K̂�0	
p"�&̂"	
;

ĝ�i	p" � ĝ�i�1	
p" �L�K̂�1	

p"�ĝ
�i�1	
p" 	
; i � 1:

(12)

Integrating the second-order approximation over the mo-
mentum p, one arrives at the diffusion equation for the
density matrix &̂". In a quasistationary regime (!� � 1)
the equation takes the following form:

@&"

@t
�D~r2&̂"� iC��; ~r&̂"
�Bf�; ~r&̂"g�

&̂"

�s
�
� � &̂"�

2�s
:

(13)

The first two terms in this equation describe spin and
charge diffusion with D � v2

F�=2 being the conventional
diffusion constant, and vF � pF=m the Fermi velocity.
The third term describes a spin precession due to the drift
velocity, and the fourth term describes the coupling be-
tween charge and spin. The right-hand side of Eq. (13)
describes spin relaxation due to the Dyakonov-Perel
mechanism [18]. The coefficients of the spin relaxation,
spin-density coupling, and spin precession are

1

�s
�

2�.

1� 4.2
; B �

�.2

1� 4.2
; C �

vF.

�1� 4.2	2
;

where � � �pF , and the dimensionless parameter . �

�� describes the relative strength of spin-orbit coupling
and disorder scattering. In deriving Eq. (13), we assumed
that the spin-orbit splitting is small compared to the
Fermi energy (� � EF), while the parameter . � �� is
arbitrary. (Physically, . represents the angle of spin pre-
cession between two consecutive collisions.) In the case
of weak spin-orbit coupling or a very clean sample (. �
1), the Dyakonov-Perel relaxation time is large compared
to the elastic mean free time �s � �=.2 � � and the
characteristic spin-relaxation length

���������
D�s

p
is large com-

pared to the mean free path. The spin dynamics is thus
slow both in space and in time, and Eq. (13) has a mean-
ing of a real diffusion equation for the coupled density
and spin degrees of freedom. The spin-density coupling
coefficient B differs, in the limit . � 1, from the corre-
sponding term that was given in the original version of
Ref. [10]. However, Ref. [10] was corrected in proof and
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now agrees with our result. We see below that the value of
B is crucial for the magnitude of the spin-Hall effect.

In the opposite limit, . � 1, spin relaxation is fast,
�s � �, and occurs on a length scale of the mean free path
l, i.e., locally as compared to the system size L � l. Spin-
relaxation dynamics (e.g., propagation of a spin-polarized
injected beam) is therefore beyond the reach of the dif-
fusion equation and must be studied with the kinetic
Eq. (6). However, Eq. (13) can still be used to study a
steady state in which spin polarization changes slowly on
a scale of l (which is the case for spin-Hall conductivity;
see below). One then has to retain the terms describing
density diffusion, spin relaxation, and spin-density cou-
pling. In the vector basis,

&̂ " � �n"=2	 � �̂ � s"; (14)

Eqs. (13) are reduced to

~r 2n" � 0; s" � �B�sz ~rn": (15)

Total density and spin polarization are expressed in this
basis as N � �

R
d"n", and S � �

R
d"s".

Spin accumulation.—We now apply the spin diffusion
Eq. (13) to analyze spin accumulation in a finite-size
sample of the length L contacted by two ideal unpolar-
ized metallic leads. The sample is infinite in the trans-
verse direction so that &̂"�x	 depends on the longitudinal
coordinate x only. Note that the electric field in the
sample enters Eq. (13) only via ~r � r� eE@" and there-
fore can be eliminated by shifting the energy as " ! "�
eEx. Thus, the electric field may be treated via the bound-
ary conditions, &̂"�0	 � F"�eV , &̂"�L	 � F", where V �
EL is the voltage bias between the two leads, and F" is the
equilibrium Fermi-Dirac distribution. Substituting the
expansion (14) into Eq. (13) we observe that sx" � sz" �
0. The other two equations yield

n"�x	 � 2�1� x=L	F"�eV � 2xF"=L;

d2sy"
dx2

�
sy"
L2
s
�

B
D

dn"
dx

; L2
s � D�s:

(16)

Note that the B term in the equation for n" leads to small
corrections, ��2=v2

F, which must be neglected in the
considered approximation. The solution to the second of
Eqs. (16) yields

Sy�x	 �
eEeff.
2�vF

�
1�

cosh�2� x=Ls


cosh2

�
; (17)

where 2 � L=2Ls, and Eeff � V=L. For 2 ! 1, this
agrees with the previous calculation by Edelstein [13].

Spin current.—The spin current, as defined in the in-
troduction, is found from the Keldysh Green’s function,

jik �
1

8m
Tr �̂i�r0

k �rk	x0!xĜ
K �

�
2
!ikzN: (18)

The function ĜK can be expressed via the density &̂" with
the help of the equation, ĜK � ĜR
̂KĜA, which follows
-3
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from Dyson’s Eq. (4). After simple transformations,

jik �
i

8�m�
Tr �̂i�r0

k �rk	x0!x

Z
d"dy

 ĜR
" �x� y	&̂"�y	Ĝ

A
" �y � x0	 �

�
2
!ikzN:

(19)

Keeping now in the integrand only the zero and first-order
terms in the expansion of &̂" over y � x, we arrive at the
final expression for the nonequilibrium spin current in
terms of the density and spin distribution functions,

jik � �e
�iz.2�zEeff
k
2��1� 4.2	

�
vF.��izSk � �ikS

z	

1� 4.2
: (20)

Here Eeff � E� rN=2e� is the gradient of the electro-
chemical potential including both the electric field and
the gradient of electron density. Substituting Eq. (17) into
Eq. (20) we observe that the two contributions to jik
cancel each other in the bulk of a sample. Therefore, the
dc spin current vanishes independent of . .

However, near the contacts where the spin polarization
deviates from its bulk value, the spin current is nonzero.
Using the expression (17) in Eq. (20), we find that the spin
current near the contacts decays as (. � 1)

jzy�x	 � �
eE
2�

.2e�x=Ls : (21)

For a sample of finite width, this spin current should lead
to a nonzero spin accumulation Sz within a distance Ls of
the corners of the sample, as illustrated in Fig. 1.

Note that for a nonuniform system in thermal equilib-
rium, where Eeff � 0, the spin density given by Eq. (16) is
zero, as well as the spin current. Small equilibrium spin
currents [8], proportional to ��=vF	3, are beyond the
approximation used when deriving Eq. (20). Our deriva-
tion of the diffusion Eq. (13) and the spin current (20)
relies on the approximation (3) that neglects contributions
from diagrams with crossed impurity lines (ladder ap-
proximation). This is usually justified provided that
EF� � 1. In an infinite system the result (20) is equiva-
lent to a calculation within the Kubo formalism with the
first term representing a single-loop contribution and the
second term originating from the ladder impurity
diagrams.

To reconcile our result for spin current with the pre-
dictions of Ref. [2], it is helpful to consider the ac spin-
Hall effect [9]. When the applied electric field is time
dependent, spin polarization is retarded with respect to
the field, due to the finite spin-relaxation time. As a
result, the spin polarization contribution in Eq. (20)
does not exactly cancel the electric-field contribution,
and spin-Hall conductivity becomes nonzero. Solving
Eq. (9) for the homogeneous infinite system and general-
izing Eq. (19) for a time-dependent state, we find,

�sH�!	 �
e�2

2�
!�

!��4�2 � �!� i
�	
2
 � 2i�2 : (22)
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For low frequencies, !�s < 1, the spin-Hall conductivity
remains small, �sH ��i!�. When the frequency ex-
ceeds the spin-relaxation rate (!�s � 1), �sH reaches
its maximum value e�=�4��s	. For clean samples, this
is the universal value e=8� predicted in Ref. [2], while
for dirty samples (. � 1) the maximum value of the
spin-Hall conductivity remains strongly suppressed,
�sH � e.2=�2�	.

To conclude, we derived a quantum kinetic equation
for 2D electrons in the presence of spin-orbit coupling
and short-range potential scattering. We proved that the
dc spin-Hall effect disappears in a bulk sample, and we
computed the spin accumulation in a finite-size system
for a wide range of parameters.
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