Anomalous Hall Heat Current and Nernst Effect in the CuCr₂Se_{4-x}Br_x Ferromagnet

Wei-Li Lee,¹ S. Watauchi,^{2,*} V. L. Miller,² R. J. Cava,² and N. P. Ong¹

¹Department of Physics, Princeton University, New Jersey 08544, USA ²Department of Chemistry, Princeton University, New Jersey 08544, USA (Received 8 June 2004; published 22 November 2004)

In a ferromagnet, an anomalous Hall heat current, given by the off-diagonal Peltier term α_{xy} , accompanies the anomalous Hall current. By combining Nernst, thermopower, and Hall experiments, we have measured how α_{xy} varies with hole density and lifetime τ in CuCr₂Se_{4-x}Br_x. At low temperatures *T*, we find that α_{xy} is independent of τ , consistent with anomalous-velocity theories. Its magnitude is fixed by a microscopic geometric area $\mathcal{A} \sim 34$ Å². Our results are incompatible with some models of the Nernst effect in ferromagnets.

DOI: 10.1103/PhysRevLett.93.226601

PACS numbers: 72.15.Gd, 72.10.Bg, 72.15.Jf, 75.47.-m

In a ferromagnet, the anomalous Hall effect (AHE) is the appearance of a spontaneous Hall current flowing parallel to $\mathbf{E} \times \mathbf{M}$, where \mathbf{E} is the electric field and \mathbf{M} the magnetization [1]. Karplus and Luttinger (KL) [2] proposed that the AHE current originates from an anomalous-velocity term which is nonvanishing in a ferromagnet. The topological nature of the KL theory has been of considerable interest recently [3-6]. Experimentally, strong evidence for the dissipationless nature of the AHE current has been obtained in the spinel ferromagnet $CuCr_2Se_{4-x}Br_x$. Lee *et al.* [7] reported that, despite a 1000-fold increase in the resistivity ρ induced by varying the Br content x, the anomalous Hall conductivity (normalized per carrier and measured at 5 K) stays at the same value, in agreement with the KL prediction. A test of the anomalous-velocity theory against the AHE in Fe has also been reported [8].

It has long been known that an anomalous heat current density \mathbf{J}^{Q} also accompanies the AHE current in the absence of any temperature gradient [9,10]. In principle, $\mathbf{J}^{\mathcal{Q}}$ can provide further information on the origin of the AHE, but almost nothing is known about its properties. A weak heat current is a challenge to measure. Instead, one often performs the "reciprocal" Nernst experiment in which a temperature gradient $-\nabla T$ produces a transverse charge current, which is detected as a Nernst electric field \mathbf{E}_N parallel to $\mathbf{M} \times (-\nabla T)$. However, in previous Nernst experiments on ferromagnets [9–11], J^Q was not found because other transport quantities were not measured. Combining the Nernst signal with the AHE resistivity ρ'_{xy} and the thermopower, we have determined how the transport quantity α_{xy} relevant to J^Q varies in $CuCr_2Se_{4-x}Br_x$ as the hole density n_h and carrier lifetime τ are greatly changed under doping. We show that α_{xy} has a strikingly simple form, with its magnitude scaled by a microscopic geometric area \mathcal{A} .

We apply a gradient $-\nabla T || \hat{\mathbf{x}}$ to an electrically isolated sample in a magnetic field $\mathbf{H} || \hat{\mathbf{z}}$. Along $\hat{\mathbf{x}}$, the charge current driven by $-\nabla T$ is balanced by a backflow current produced by a large E_x which is detected as the thermopower $S = E_x/|\nabla T|$. Along the transverse direction $\hat{\mathbf{y}}$, however, both E_x and $-\nabla T$ generate Hall-type currents. In general, the charge current in the presence of \mathbf{E} and $-\nabla T$ is $\mathbf{J} = \boldsymbol{\sigma} \cdot \mathbf{E} + \boldsymbol{\alpha} \cdot (-\nabla T)$, with $\boldsymbol{\sigma}$ and $\boldsymbol{\alpha}$ the electrical and thermoelectric ("Peltier") conductivity tensors, respectively. Setting $J_y = 0$, we obtain the Nernst signal $e_N \equiv E_y/|\nabla T| = \rho \alpha_{xy} + \rho_{xy} \alpha$, where $\alpha \equiv \alpha_{xx}$ [12]. Hence, as noted, the Nernst signal results from the two distinct y-axis charge currents, $\alpha_{yx}(-\nabla T)$ and $\sigma_{yx}E_x$. In a ferromagnet, the former is our desired gradientdriven current, whereas the latter comprises the "dissipationless" AHE current and the weak ordinary Hall current.

In terms of the thermopower $S = \rho \alpha$ and Hall angle $\tan \theta_H = \rho_{yx} / \rho$, we may express α_{xy} as

ŀ

$$\rho \alpha_{xy} = e_N + S \tan \theta_H. \tag{1}$$

FIG. 1. Curves of the measured $e_N = E_y/|\nabla T|$ versus *H* in CuCr₂Se_{4-x}Br_x, with x = 0.1 (left panel) and 0.85 (right panel). In the ferromagnetic state below T_C , e_N saturates to a constant when *H* exceeds H_s reflecting the *M*-*H* curve. The scaling factor Q_s increases rapidly as *T* increases from 10 K to T_C . In the right panel, e_N continues to scale as the *M*-*H* curve in the paramagnetic regime (275–400 K).

Hence, to find α_{xy} , we need to measure e_N , S, ρ_{xy} , and ρ . Knowing α_{xy} , we readily find the transverse heat current $J_y^Q = \tilde{\alpha}_{yx} E_x$, since $\tilde{\alpha}_{yx} = \alpha_{yx} T$ by Onsager reciprocity.

The spinel CuCr₂Se₄ is a conducting ferromagnet with a Curie temperature $T_C \sim 450$ K. Because the exchange between local moments in Cr is mediated by superexchange through 90° Cr-Se-Cr bonds rather than the carriers, T_C is not significantly reduced even when the hole population n_h drops by a factor of 30 under Br doping (Mat 5 K actually increases by 20%) [7,13]. Using iodine vapor transport, we have grown crystals with x from 0.0 to 1.0. As x increases from 0 to 1, the value of ρ at 5 K increases by $\sim 10^3$, while ρ'_{xy}/n_h increases by $\sim 10^6$ [7]. The tunability of n_h and the robustness of M under doping make this system attractive for studying charge transport in a lattice with broken time-reversal symmetry. The behavior of ρ , M, and ρ'_{xy} versus x are described in Ref. [7].

Figure 1 shows profiles of e_N versus H at selected T in two samples with x = 0.1 and 0.85 and $T_C = 400$ and 275 K, respectively. As noted above, $e_N(T, H)$ is the sum of two terms, both of which scale as M. The magnitude $|e_N|$ initially increases as H rotates domains into alignment and then saturates to a constant for $H > H_s$, the saturation field. The sign of e_N —negative in all samples—reflects the sign of the dominant term [14].

In the sample with x = 0.85, the curves above T_C show that the scaling also holds in the paramagnetic regime where the susceptibility has the Curie-Weiss form $\chi \sim 1/(T - T_C)$ in weak *H*. In analogy with the Hall resistivity $\rho_{xy} = R_0 \mu_0 H + R_s \mu_0 M$, with R_0 and R_s the ordinary and anomalous Hall coefficients, respectively, it is customary to express the scaling between the e_N -*H* and *M*-*H* curves by writing

FIG. 2. The *T* dependence of the Nernst signal e_N (solid triangles) measured at 2 T in the sample with x = 1.0. Above T_C , e_N is compared with the paramagnetic magnetization *M* at 2 T (open circles).

$$e_N = Q_0 \mu_0 H + Q_s \mu_0 M. \tag{2}$$

For $T < T_C$ in all samples, the Q_0 term cannot be resolved, so that $e_N \simeq Q_s \mu_0 M$. Moreover, below 50 K, *M* changes only weakly with *x* (by 20% over the whole doping range), so that the saturated value of the Nernst signal e_N^{sat} differs from Q_s by a factor that is only weakly *x* dependent.

The Nernst signal has very different characteristic behaviors below and above T_C . As an example, Fig. 2 shows e_N^{sat} measured at 2 T in the sample with x = 1.0 $(T_C = 210 \text{ K})$. Between 5 and 100 K, e_N^{sat} increases linearly with T. Above 100 K, e_N^{sat} rises more steeply to a sharp peak 200 K, and then falls steeply above T_C . As noted, in the paramagnetic regime, the Nernst signal matches the behavior of M as a function of both T and H. Figure 2 shows that the T dependence of e_N closely follows that of $M = \chi H$ (both are measured at 2 T). The experiment shows that, in a gradient, fluctuations of the paramagnetic magnetization lead to a significant transverse electrical current that is proportional to the average magnetization (this has not been noted before, to our knowledge). We express the proportionality as

$$\alpha_{xy} = \beta M \qquad (T > T_C), \tag{3}$$

where β is only weakly *T* dependent (it decreases by 5% between 250 and 400 K). The parameter β plays the important role of relating the magnitudes of the paramagnetic *M* and the transverse electronic current (through the Nernst signal). Its minuscule value ($\beta \simeq 2 \times 10^{-7} \text{ K}^{-1}$ at 250 K) reflects the strikingly weak coupling between the fluctuating *M* and e_N in a

FIG. 3. (a) Curves of e_N versus *T* below 150 K in five samples with doping $0.1 \le x \le 1.0$ showing nominal *T*-linear behavior at low *T* (*H* = 2 T). The slopes vary nonmonotonically with *x*. (b) shows the Hall-current term $S \tan \theta_H$ measured in the same samples at H = 2T. For x > 0.3, $S \tan \theta_H$ is opposite in sign from e_N [the symbol key applies to both (a) and (b)]. (c) shows the sharp change in the ρ -*T* profiles in the samples with x = 0.85 and 1.0 (H = 0). At low *T*, ρ at 0.85 is metallic, but at 1.0 ρ reveals hopping between strongly localized states. See Ref. [7] for ρ versus *T* for x < 0.85.

ferromagnet; a sizeable $M \sim 10^5$ A/m produces a Nernst signal of only $\sim 2 \mu V/K$. With the growth of long-range magnetic order below T_C , Eq. (3) ceases to be valid.

In the ferromagnetic state, we restrict our attention to the regime below 100 K, where e_N^{sat} is nominally linear in T. Figure 3(a) shows curves in this regime for the five samples studied. The slopes of the low-T curves are not monotonic in x. As x is increased from 0.1, the slope attains a maximum value at x = 0.25, and then decreases to a value close to its initial value when x reaches 1.0. This is perhaps not surprising since e_N involves transport quantities S, ρ , and ρ_{xy} with opposite trends versus x. By Eq. (1), we may find the curve of α_{xy} versus T by adding the curves e_N and $S \tan \theta_H$ [Fig. 3(b)] and dividing by ρ . The data in Figs. 3(a) and 3(b) show that these terms are opposite in sign for x > 0.3. With increasing x, their mutual cancellation suppresses α_{xy} strongly. In particular, at the largest x (0.85 and 1.0), the cancellation is nearly complete and α_{xy} is very small below 100 K; i.e., the observed e_N is nearly entirely from the AHE of the backflow current. For $0.1 \le x < 0.3$, $S \tan \theta_H$ is negligible and e_N largely reflects the behavior of α_{xy} . We exclude from our study the undoped compound $CuCr_2Se_4$ because e_N and ρ'_{xy} were not resolved at low T. These trends emphasize the importance of knowing all four transport quantities, instead of just e_N , to discuss \mathbf{J}^Q meaningfully.

Finally, the derived curves of α_{xy} versus *T* are shown in Fig. 4. In contrast to the nonmonotonic behavior of e_N versus *x*, α_{xy} varies linearly with *T* as $\alpha_{xy} = b(x)T + c$, where the slope b(x) now decreases monotonically as *x* increases from 0.1 to 1.0 (Fig. 4). In all samples except x = 0.25, the parameter *c*—probably extrinsic in nature—is close to zero within our accuracy. The dependence of the parameter $b(x) = [\alpha_{xy}(T) - \alpha_{xy}(0)]/T$ on these two quantities is of main interest. Figure 4(b) compares how b(x) and n_h (determined [7] from ρ_{xy} above T_C) vary with *x*. Whereas, at small *x*, the decrease in b(x)

seems to match that of n_h , b(x) falls much faster to zero at large x.

A striking relation between them becomes apparent if we plot one against the other. Figure 5 shows that, when x decreases below 0.85, b(x) grows as a fractional power of $n_h - n_{h0}$ with n_{h0} a threshold density. This is consistent with b(x) increasing as the density of states (DOS), viz., $b(x) \sim \mathcal{N}_F$. The DOS for the free-electron gas \mathcal{N}_F^0 (dashed curve) has a slightly stronger curvature than the data. Interestingly, the occurrence of the threshold doping at x = 0.85 accounts well for a puzzling change in the resistivity behavior when x exceeds 0.85 [Fig. 3(c)]. In general, slowly increasing x causes the resistivity profiles to change systematically, reflecting slight decreases in both n_h and ℓ_0 (mean-free path). However, between 0.85 and 1.0, the change is sudden and striking. At x = 0.85, ρ is T independent below 100 K consistent with a disordered metal. By contrast, at 1.0, ρ rises monotonically with decreasing T [Fig. 3(c)]. Between 300 and 4.2 K, ρ increases from 6.3 to 32 m Ω cm. At low T, conductivity proceeds by hopping between strongly localized states in an impurity band. Figure 5 confirms that we reach the extremum of the hole band near x = 0.85. Further removal of carriers $(x \rightarrow 1)$ affects states within the impurity band.

Knowing n_h and ρ at each x, we may determine the mean-free path ℓ_0 in the impurity-scattering regime. Between x = 0.1 and 1.0, ℓ_0 decreases by a factor of 40. This steep decrease has no discernible influence on b(x). Combining these factors then, we have $\alpha_{xy} = gT\mathcal{N}_F$, where g is independent of ℓ_0 . We may boil down α_{xy} to the measurement of an "area" \mathcal{A} by writing

FIG. 4. (a) Curves of α_{xy} versus *T* obtained by adding e_N and $S \tan \theta_H$ [Eq. (1)]. The slope b(x) now falls monotonically as *x* increases to 1.0. (b) compares how the slope $b(x) = \Delta \alpha_{xy}/T$ and n_h vary with *x*.

FIG. 5. Plot of $b(x) = \Delta \alpha_{xy}/T$ against n_h showing that for samples with $x \le 0.85 \ b(x)$ increases as a fractional power of $n_h - n_{h0}$. The dashed line is $\Delta \alpha_{xy}/T = g \mathcal{N}_F^0$, with $g = 9.77 \times 10^{-50}$ in SI units.

$$\alpha_{xy} = \mathcal{A} \frac{ek_B^2 T}{\hbar} \mathcal{N}_F \qquad (T \ll T_C), \tag{4}$$

with k_B Boltzmann's constant and e the electron charge. The value of g gives $\mathcal{A} = 33.8 \text{ Å}^2$ if we assume $\mathcal{N}_F \sim \mathcal{N}_F^0$. As the anomalous Hall heat current produced by $\mathbf{E} || \hat{\mathbf{x}}$ is $J_y^Q = \alpha_{yx} TE$, it shares the simple form in Eq. (4). The ratio $J_y^Q/J_y \sim T^2$, as expected for a Fermi gas.

We briefly sketch the anomalous-velocity theory [2–4]. In a periodic lattice, the position operator for an electron is the sum $\mathbf{x} = \mathbf{R} + \mathbf{X}(\mathbf{k})$, where **R** locates a unit cell, while $\mathbf{X}(\mathbf{k})$ locates the intracell position [15]. A finite $\mathbf{X}(\mathbf{k})$ implies that **x** does not commute with itself. Instead, we have [15] $[x_j, x_k] = i\epsilon^{jkm}\Omega_m$, with ϵ^{jkm} the antisymmetric tensor, which implies the uncertainty relation $\Delta x_j \Delta x_k \sim \Omega$. The "Berry curvature" $\mathbf{\Omega}(\mathbf{k}) =$ $\nabla_{\mathbf{k}} \times \mathbf{X}$ is analogous to a magnetic field in **k** space [16]. In the presence of **E**, $\mathbf{\Omega}$ adds a term that is the analog of the Lorentz force to the velocity \mathbf{v}_k , viz.,

$$\hbar \mathbf{v}_{\mathbf{k}} = \nabla \boldsymbol{\epsilon}(\mathbf{k}) - \mathbf{E} \times \boldsymbol{\Omega}(\mathbf{k}). \tag{5}$$

The anomalous-velocity term in Eq. (5) immediately implies the existence of a spontaneous Hall current $\mathbf{J}_H = -2e\sum_{\mathbf{k}} f_{\mathbf{k}}^0 \mathbf{E} \times \mathbf{\Omega}(\mathbf{k})$, where $f_{\mathbf{k}}^0$ is the unperturbed distribution [2–4,8,15]. The unconventional form of the current—notably the absence of any lifetime dependence has made the KL theory controversial for decades [1,17]. However, strong support has been obtained from the measurements of Lee *et al.* [7] showing that the normalized AHE conductivity σ'_{xy}/n_h in CuCr₂Se_{4-x}Br_x is unchanged despite a 1000-fold increase in ρ .

In general, the off-diagonal term α_{xy} is related to the derivative of σ_{xy} at the chemical potential μ , viz., $\alpha_{xy} = (\pi^2/3)(k_B^2 T/e)[\partial \sigma_{xy}/\partial \epsilon]_{\mu}$ [12]. Using the result [7] that σ'_{xy} is linear in n_h but independent of ℓ_0 , and $[\partial n_h/\partial \epsilon]_{\mu} = \mathcal{N}_F$, we see that $\alpha_{xy} \sim T\mathcal{N}_F$, consistent with Eq. (4). (By contrast, we note that the skew-scattering model [17] would predict $\sigma'_{xy} \sim n_h \ell_0$ and $\alpha_{xy} \sim T\mathcal{N}_F \ell_0$.)

Finally, \mathcal{A} in Eq. (4) has the value 34 Å². If Eq. (5) is indeed the origin of α_{xy} , \mathcal{A} must be roughly the scale of $\Omega \sim \Delta x_j \Delta x_k$. Hence the value $\mathcal{A} \sim \frac{1}{3} \times$ the unit-cell area seems reasonable (the lattice spacing here is 10.33 Å). While a quantitative comparison requires knowledge of $\Omega(\mathbf{k})$ over the Brillouin zone, the simple form of Eq. (4) seems to provide valuable insight on the anomalous heat current.

A previous calculation of the Nernst coefficient was based on the "side-jump" model [18]. On scattering from an impurity, the carrier suffers a small sideways displacement δ to give on average $\tan \theta_H = \delta/\ell_0$. This was used to derive $Q_s \sim T(k_F \ell)^{-1}$. In our experiment, $k_F \ell$ falls monotonically, with increasing x, while e_N rises to a broad maximum near 0.25 before falling. Hence our experiment is in essential conflict with the side-jump model. From earlier experiments [11], an empirical form $Q_s = -(a + b'\rho)T$ has been inferred (*a*, *b'* are constants). This is not borne out in our data.

Combining Nernst, Hall, and thermopower experiments on the ferromagnet CuCr₂Se_{4-x}Br_x, we have determined how α_{xy} (hence \mathbf{J}^Q) changes as a function of n_h and τ . At low T, we find that α_{xy} follows the strikingly simple form $\alpha_{xy} \sim \mathcal{A}T\mathcal{N}_F$, consistent with the anomalous-velocity theory for the AHE (Fig. 4). In addition, a direct relation [Eq. (3)] between M and α_{xy} is observed in the paramagnetic regime above T_C .

We acknowledge support from the U.S. National Science Foundation (Grant No. DMR 0213706).

*Permanent address: Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae, Kofu, Yamanashi 400-8511, Japan.

- [1] For a review, see *The Hall Effect in Metals and Alloys*, edited by Colin Hurd (Plenum, New York, 1972), p. 153.
- [2] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954); J. M. Luttinger, Phys. Rev. 112, 739 (1958).
- [3] Ganesh Sundaram and Qian Niu, Phys. Rev. B **59**, 14915 (1999).
- [4] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).
- [5] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
- [6] T. Jungwirth, Qian Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
- [7] Wei-Li Lee, Satoshi Watauchi, R. J. Cava, and N. P. Ong, Science **303**, 1647 (2004).
- [8] Yugui Yao et al., Phys. Rev. Lett. 92, 037204 (2004).
- [9] Alpheus W. Smith, Phys. Rev. 17, 23 (1921); R. P. Ivanova, Fiz. Met. Metalloved. 8, 851 (1959).
- [10] For a table of Nernst data, see *Handbook of Physical Quantities*, edited by Igor S. Grigoriev and Evgenii Z. Meilikhov (CRC Press, Boca Raton, FL, 1997), p. 904.
- [11] E. I. Kondorskii, Sov. Phys. JETP 18, 351 (1964); E. I. Kondorskii and R. P. Vasileva, Sov. Phys. JETP 18, 277 (1964).
- [12] Yayu Wang et al., Phys. Rev. B 64, 224519 (2001).
- [13] K. Miyatani et al., J. Phys. Chem. Solids 32, 1429 (1971).
- [14] In our convention, the sign of e_N is that of the Nernst signal of vortex flow in a superconductor [12]; viz., e_N is positive if $\mathbf{E}_N || \mathbf{H} \times (-\nabla T)$.
- [15] E. N. Adams and E. I. Blount, J. Phys. Chem. Solids 10, 286 (1959).
- [16] In terms of Bloch functions $\psi_{n\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}$, the matrix element of the intracell operator $\mathbf{X}(\mathbf{k}) = i\int d^3r u_{n\mathbf{k}}^* \nabla_{\mathbf{k}} u_{n\mathbf{k}}$ has the form of a Berry gauge potential whose line integral gives a phase accumulation $\gamma = \oint d\mathbf{k} \cdot \mathbf{X}(\mathbf{k})$ that reflects motion in an effective magnetic field $\mathbf{\Omega} = \nabla_{\mathbf{k}} \times \mathbf{X}(\mathbf{k})$ existing in **k** space.
- [17] J. Smit, Physica (Amsterdam) 21, 877 (1955); Phys. Rev. B 8, 2349 (1973).
- [18] L. Berger, Phys. Rev. B 2, 4559 (1970); 5, 1862 (1972).