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Using a path integral approach and bosonization, we calculate the low-energy asymptotics of the one
particle Green’s function for a ‘‘magnetically incoherent’’ one dimensional strongly interacting electron
gas at temperatures much greater than the typical exchange energy but much lower than the Fermi
energy. The Green’s function exhibits features reminiscent of spin-charge separation, with exponential
spatial decay and scaling behavior with interaction dependent anomalous exponents inconsistent with
any unitary conformal field theory. We compute the tunneling density of states at low energies and find
that it is a power law in energy with exponent 1=�4g� � 1, where g is the Luttinger interaction parameter
in the charge sector. The underlying physics is made transparent by the simplicity of the approach. Our
results generalize those of Cheianov and Zvonarev [Phys. Rev. Lett. 92, 176401 (2004)].
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Interacting one dimensional electron systems have
proven to be especially rich in their physics, most notably
because of the universal low-energy properties that are
present when the interactions are not too strong, the so-
called Luttinger liquid (LL) state [1] whose existence in
nature is now established [2]. It is well known [3] that the
LL state exhibits decoupled spin and charge degrees of
freedom (spin-charge separation) with distinct spin and
charge velocities for the respective collective modes.
Characteristic of the LL state are power-law decays of
various correlation functions, notably the single-particle
Green’s function, which is suppressed relative to the naı̈ve
expectation of Fermi liquid theory. As one consequence,
the local tunneling density of states vanishes in a power-
law fashion as the chemical potential is approached. All
low-energy properties of the LL state can be understood
from bosonization, which relates them to correlators in a
simple free boson unitary conformal field theory (CFT).

In the regime of strongly interacting, very low density
electrons, different physics is to be expected when the
assumptions of LL theory break down. The distinction
between low and high densities is often quantified by the
parameter rs � � �naB�

�1 where �n is the average electron
density and aB is the Bohr radius specific to the material.
When rs � 1 the spacing between electrons is large
compared to aB and the potential energy dominates the
kinetic energy, driving the system towards a Wigner
crystal. When such strong interactions are present, it
becomes difficult for electrons to exchange their position
since they must effectively tunnel through one another,
leading to an exponentially small [4,5] (in rs) exchange
energy J. It then becomes quite easy to reach the mag-
netically incoherent regime where the exchange energy is
much less than the temperature: J � T. In this Letter we
compute the low-energy asymptotics of the 1D Green’s
function for general interactions in the limit rs � 1 when
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the temperature is still much less than the Fermi energy:
J � T � EF. We find that the Green’s function exhibits
exponential decay in the spin sector and power-law decay
in the charge sector characterized by interaction depen-
dent anomalous exponents (which do not correspond to
any unitary conformal field theory). Our results general-
ize the results of Cheianov and Zvonarev [6] (CZ) and the
zero field results of Berkovich [7] and are obtained in a
much simpler and more physically transparent manner.

Due to breakthroughs in materials technology that
allow unprecedented exploration of clean 1D quantum
wires [8] theoretical interest in such systems has also
been renewed [9]. The regime J � T � EF was recently
considered by Matveev [5] where he showed there is a
drop in the conductance of a one channel wire from 2e2=h
to e2=h when J drops below T. In the same regime CZ [6]
have computed the low-energy asymptotics of the one
particle Green’s function assuming infinitely strong zero
range interactions between electrons. Their tour de force
Bethe-ansatz based calculation, however, does not pro-
vide clear insight into the physics. Moreover, their results
are specific to the special features of the Hamiltonian
they considered. Our calculation of the 1D Green’s func-
tion in the regime J � T � EF is completely general and
simple enough to highlight the physical origins of the
non-LL features.

We note that the physics of the J � T � EF regime is
of broad and general interest as it may play some role in
other systems not fully understood, such as the two di-
mensional metal-insulator transition and the 0.7 anomaly
in quantum point contacts. As such, it is a worthwhile
endeavor to elucidate the basic physics of this regime.

Model.—We assume that the electrons are confined to
one dimension and experience predominantly repulsive
and spin-independent interactions, i.e., ones which can be
written solely in terms of the local electron density
1-1  2004 The American Physical Society



PRL 93, 226401 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
26 NOVEMBER 2004
n�x� �
P
��";# 

y
��x� ��x�. Here  ��x� is the field operator

for an electron at position x with spin �. In the discussion
that follows, we will not require an explicit Hamiltonian,
but rather make use of an effective low-energy theory that
contains renormalized parameters, vc and g, depending
on the microscopic interactions in an unspecified way.
Despite our interest in the magnetically incoherent re-
gime J � T, we will see that the essential parameters
describing the effect of interactions may be obtained
from the charge sector action of LL theory which obtains
at the lowest temperatures T � J:
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where vc is the velocity of charge excitations, g is the
parameter of the low-energy theory measuring the
strength of electron interactions and the charge fields �,
and � are the fields appearing in the low-temperature
bosonized version of the electron operator. The charge
fields are defined via �" � �# � � and ��" ��#�=2 � �.
The � field is related to the particle density fluctuations
through the familiar relationship n�x� � 1

� @x��x� and
e�i� annihilates/creates a particle at x. We choose to do
all our calculations in imaginary time, � � it. The
Green’s functions of interest (retarded, advanced, etc.)
can then be computed by the appropriate analytical con-
tinuation to real time.

Results.—We compute the single-particle Green’s
function

G �x; �� � h "�x; �� 
y
" �0; 0�i; (2)

in the limit J � T � EF by first averaging over spin
configurations and then computing the low-energy charge
dynamics using (1). Because of the spin rotational inv-
ariance of the electron interactions, the Green’s function
for spin-down electrons coincides with (2). We find (for
0< x; �! 1)
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C0e�~kFx�ln2=��
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where C0 is an undetermined constant (CZ determine it
for the special case of infinite strength zero range inter-
actions in Ref. [6]). Here we follow CZ and define a
spinless Fermi wavevector ~kF � � �n, where �n is the aver-
age density of electrons. The phases ’�

g are given by

’�
g �x; �� �
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�
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: (4)

The power-law decay of (3) is characterized by the
anomalous exponent
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: (5)

It is clear that the Green’s function (3) does not fit into
the usual LL paradigm of correlation functions with
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power-law decay because of the exponential decay with
distance. We will show that this exponential decay is
simply a result of spin averaging when J � T. The ex-
ponents characterizing the power-law decay of the charge
sector are anomalous because for certain values of g, g �
1=2 for example, 	g�1=2 � � 1

4 �
ln2
� �

2 < 0, which, if inter-
preted as arising from CFT, implies nonunitarity in the
charge sector [6]. We will show the anomalous power-law
decay of (3) comes from density fluctuations in the charge
sector after averaging over the spin degrees of freedom.

We also compute the x � 0 Green’s function

G �0; �� �
1���������������������

�1=2g ln���
q ; (6)

from which the low frequency spectral function can be
computed

A�!� / !�1=4g��1=
���������������
j ln�w�j

q
: (7)

All our results recover the results of CZ in the special
case they considered of infinite repulsive local
(%-function) interactions, which is just the infiniteU limit
of the Hubbard model. The CZ limit corresponds [10] to
g � 1=2, from which all their results can be recovered by
plugging this value of g into Eqs. (4)–(7). (CZ ignore the�����������
ln�w�

p
factor in (7); our results agree exactly at g � 1=2.)

Derivation of Results.—We study the single-particle
Green’s function for a general (finite range and strength
of interactions), strongly interacting 1D electron system
at finite temperature:

G �x; �� �
1

Z
Tr�e�(H "�x; �� 

y
" �0; 0��; � > 0: (8)

Here Z � Tr�e�(H� is the partition function and ( is the
inverse temperature. Our results are based on the first
quantized path integral representation of G�x; �� and Z
in imaginary time, � � it. As is well-known, Z is ob-
tained as an integral over world lines (paths) of up and
down spin electrons, with periodic boundary conditions
in imaginary time allowing for permutations of identical
particles; i.e., the final positions of electrons of a given
spin polarization must be a permutation of their initial
positions (up and down electrons may not be permuted as
they are not identical). Each such configuration is
weighted by ��1�P"�P#e�Se , where Se is the Euclidean
action describing the ‘‘deformation’’ of the world lines
and ��1�P� is the sign of the permutation of spin �
electrons. The numerator of Eq. (8) is a similar integral
over paths, with a spin-up electron world line inserted at
�0; 0� and another removed at �x; ��. To compute the sign
of the permutation, one should treat the path terminating
at �x; �� as continuing from (0,0).

A crucial element of our analysis is a noncrossing
condition. Because of the Pauli principle, world lines of
the same spin electrons can be treated as noncrossing ir-
respective of interactions. Moreover, the condition J � T
-2
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FIG. 1. World lines for a strongly interacting 1D electron gas
at J � T. Particle trajectories in space and imaginary time are
shown as curved lines. The dashed lines represent the world
line paths for creating a particle and removing it for large x �
xf � xi, � � �f � �i, [(a) and (b)], and for x � 0, � [(c) and
(d)]. The solid lines represent trajectories of other particles.
Because of the large action cost associated with the trajectories
in (b), at low energies a process like that shown in (a) where
world lines wrap around from � � ( to � � 0 will dominate.
Such a process, however, requires that all dashed world lines
have the same spin. For J � T this occurs with probability 2�N

as discussed in the text. Figure part (c) shows a contribution to
the k � 1 term of Eq. (13), however, processes like that shown
in (d) dominate and yield the Green’s function (6).
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precisely corresponds to the absence of crossings (ex-
changes) of opposite spin world lines (1=J � ( gives
the typical distance in imaginary time between exchange
events). Physically, this is due to the large Coulomb
repulsion of electrons. Thus the topology of the paths is
identical to that of spinless fermions or infinitely repul-
sive spinless bosons. Some world line trajectories are
shown in Fig. 1.

We choose to compute the trace in Eq. (8) by first
summing over all possible spin assignments for each set
of world lines. This gives an effective weight for the
remaining sum over the world line configurations. This
weight includes two contributions: (1) the Euclidean ac-
tion factor e�Se and (2) a magnetic/statistical factor ob-
tained from the spin sum and permutation signs, which is
discussed below. Given the noncrossing topology and
spin-independent interactions, the Euclidean action is
expected to be well approximated (for T � EF) by the
low-energy effective form appropriate to spinless (in gen-
eral interacting) fermions/bosons, which justifies Eq. (1).
Moreover, for J � EF, we expect this ‘‘charge sector’’
action to be identical to the ultimate low-energy charge
action of LL theory valid for T � J.

Next consider the spin sum. The limit J � T implies
that for a fixed set of world lines all spin configurations
are computed with equal weight. In order for a particle
created at spacetime coordinate (0,0) to be annihilated at
�x; �� a large distance away, the world line must ‘‘wrap
around’’ the imaginary time interval 0 to ( a large
number of times. From Fig. 1 it is clear that to stay in
the low-energy sector, all intermediate world lines must
have the same spin. Any configuration of world lines
without all the intermediate lines having the same spin
would violate the noncrossing condition. When the spin
average is taken in the trace in (8), only the term with all
intermediate world lines having spin-up will contribute to
the low-energy Green’s function. For N intermediate
world lines, the probability that all N � 1 spins are the
same is 2�N . After an electron added at (0,0) reaches
�x; ��, it has been permuted through N electrons of the
same spin and therefore the Green’s function picks up a
factor ��1�N .

After spin averaging for J � T, the Green’s function
therefore becomes

G �x; �� � h2�N�x;����1�N�x;��ei���x;�����0;0��i; (9)

where now the average is taken at T ! 0 in the charge
sector. The term ei���x;�����0;0�� creates a world line at (0,0)
and annihilates it at �x; ��. (Note that at this stage in the
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calculation the dynamics after spin averaging become
effectively spinless as discussed earlier.) All the effects
of statistics and spin are encapsulated in the first two
terms inside the average. The number of electrons is
related to the � field via

N�x; �� � �nx�
1

�
���x; �� � ��0; 0��; (10)

which expressed the number of electrons in a distance x in
terms of the average density and a small fluctuating piece
expressed in terms of the � fields. Using Eq. (10), we write
��1�N � Re�ei�N�, the simplest form correct for integer
N (the harmonic approximation violates this) and consis-
tent with the requirement that G�x; �� be real and even in
x. The Green’s function can now be expressed as G �
G� � G�, with G� � �G��

� and
G ��x; �� � e�~kFx�ln2=��ei~kFxhe��ln2=�����x;�����0;0��ei���x;�����0;0��ei���x;�����0;0��i; (11)

where the first two terms come from the exponentiation of the average density and we have used ~kF � � �n. This clearly
identifies the exponential decay of the first term as coming from spin averaging and the oscillatory second term as
coming from Fermi statistics.

We now compute the part of the Green’s function coming from fluctuations in the charge sector using the action (1).
Making the definitions ��x; �� � ��x; �� ���0; 0� and ��x; �� � ��x; �� � ��0; 0�, we use the Gaussian action to move
1-3
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the averages to the exponent,

G ��x; �� � e�~kFx�ln2=��ei~kFxhei�1�i�ln2=�����x;��ei��x;��i � e�~kFx�ln2=��ei~kFxe��1=2��1�i�ln2=���2h�2ie��1=2�h�2ie��1�i�ln2=���h��i:

(12)

Standard computations from Eq. (1) give h�2i � g ln�x2 � v2c�2�, h�2i � 1
4g ln�x

2 � v2c�2�, and h��i � 1
2 ln�

vc��ix
vc��ix

�.
Substituting these values into Eq. (12), the anomalous exponent given in Eq. (5) is obtained. An additional phase factor
comes from the � ln2

� �h�2i � h��i� � � ln2
� �g ln�x2 � v2c�2� �

1
2 ln�

vc��ix
vc��ix

�� piece in the exponent. Combining this with
the complex conjugate yields Eq. (3).

The preceding calculation brings out the essential physics of the Green’s function (3): The spin averaging is
responsible for the exponential decay of the Green’s function and imposes a constraint on the world line configurations
that contribute to it. Fermi statistics is responsible for the oscillatory terms. Treating Gaussian fluctuations about this
constraint in the charge sector results in the power-law decay with generalized anomalous exponents depending on the
interaction parameter g.

Having discussed the spatial asymptotics of G�x; ��, for x; �! 1, we now turn our attention to G�0; �� which will
allow us to compute the low-energy tunneling density of states at a point. Unlike the situation with x! 1, computing
the Green’s function at x � 0 forces us to consider the discreteness in the number of world lines that may ‘‘bend’’ in
between (0,0) and �0; ��:

G �0; �� �
X1

k��1

2�jkj��1�kh%�N�0; �� � k�ei���0;�����0;0��i �
1��������������������������

�1=2gln�vc��
q X1

k��1

2�jkj��1�ke��
2k2=4g ln�vc��; (13)
where the result (6) is recovered by noting that the sum
depends only weakly on � and ranges between 1=3 and 1.
Fourier transforming (13) into frequency space immedi-
ately gives (7).

Discussion.—We have computed the low-energy
asymptotics of the one particle Green’s function G�x; ��
in the limit of rs � 1 and J � T � EF for arbitrary
interactions. We find the correlation function does not fit
the usual LL form. Instead, the spin averaging present in
the Green’s function for J � T results in an exponential
decay of the Green’s function with distance. The low-
energy behavior of the charge sector still shows a
power-law decay due to Gaussian fluctuations, but with
interaction dependent anomalous exponents. The low fre-
quency tunneling density of states (proportional to the
spectral function) also shows interesting behavior de-
pending on g: A�!� / !1=�4g��1, which shows a crossover
from a power-law divergence for g > 1=4, to a pseudogap
when g < 1=4. The divergence at low energies can be
understood as coming from the infinite spin degeneracy
when J � T. As the interactions increase (g decreases)
the suppression of the density of states in the charge sec-
tor overwhelms the spin degeneracy to recover the power-
law suppression familiar in LL theory. Finally, we note
that Fourier transforming the Green’s function (at low
frequency) into momentum space will result in broad
peaks of width �~kF centered at k � �~kF. Note that the
‘‘Fermi momentum’’ ~kF appearing here differs by a factor
of 2 from the usual Fermi momentum: kF � � �n=2 �
~kF=2. Hence, as one moves from rs � 0 to rs � 1 and
the regime J � T � EF is reached, one expects to see
delta-function-like peaks present at small rs to broaden to
width �~kF and the centers to shift from �� �n=2 to �� �n
226401
creating a broad double-lobed structure in momentum
resolved tunneling when rs � 1 and J � T � EF. We
hope this work will inspire new ideas in other systems
where the physics discussed here may play a role.
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