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Scaling of Entropic Shear Rigidity
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The scaling of shear modulus near the gelation-vulcanization transition is explored heuristically and
analytically. It is found that in a dense melt the effective chains of the infinite cluster have sizes that
scale sublinearly with their contour length. Consequently, each chain contributes kg7 to the rigidity,
which leads to a shear-modulus exponent dv. In contrast, in phantom elastic networks the scaling is
linear in the contour length, yielding an exponent identical to that of the random resistor network
conductivity, as predicted by de Gennes. For nondense systems, the exponent should cross over to dv
when the percolation correlation length is much larger than the density-fluctuation length.
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Introduction—Gelation and vulcanization are continu-
ous phase transitions from liquids to random solids,
caused by the introduction of chemical (i.e., permanent)
cross-links; see, e.g., Ref. [1]. It is by now well established
that the geometrical aspects of these transitions are
correctly described by percolation theory [1-3].
Qualitatively speaking, both transitions—gelation-
vulcanization and percolation—are controlled by the
emergence and structure of an infinite cluster at the
critical point.

The elastic and thermodynamic properties of gels near
the critical point are not as well established. Of these, the
most controversial is the scaling behavior of the static
shear modulus u, which is defined in the following way.
Consider a spatially homogeneous, volume-preserving
shear deformation A [4], with detA = 1. Under such a
deformation, the increase in the free energy of a gel is, to
leading order, given by [5]

SF=Vu(Trg—d), g=AT-A, (1)

where g is the metric tensor and d is the spatial dimen-
sionality. The shear modulus is expected, on general
grounds, to obey a scaling law near the critical point,

= 1@, @)

where the control parameter » measures (minus the)
deviation of the cross-link density from criticality (i.e.,
r < 0 in the solid phase), and O is the unit step function.

Values reported for the exponent f, from either experi-
ments or computer simulations, are rather scattered, and
seem to suggest four different universality classes [6]. For
systems with entropic elasticity, which is the focus of this
Letter, values of f usually fall into one of two classes.
First, most numerical simulations [7] involving phantom
networks, as well as many gelation experiments, suggest
that f has the same value as the conductivity exponent ¢
( = 1.9 in three dimensions) of random resistor networks,
supporting a conjecture of de Gennes [1]. A second class
of experiments, as well as some simulations, support the
scaling result f =dv (= 2.6 for three dimensions),
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where v is the percolation correlation-length exponent,
as proposed in Ref. [8]. The argument for the latter
exponent is in the spirit of the classical theory of rubber
elasticity (see, e.g., Ref. [5]), in which the elastic modulus
acquires a contribution of kg7 per effective chain. The
purpose of this Letter is to use heuristic and analytical
methods to outline a resolution of the long-standing
apparent contradiction between the two plausible argu-
ments, mentioned above, as well as the inconsistency
across experimental and simulational data.

Heuristic reasoning.—Let us first consider gelation in a
dense system with strong interparticle repulsions, and let
the system be near the critical point. Then the character-
istic length scale for density fluctuations &y, is much
smaller than the percolation correlation length &, (be-
yond which the infinite cluster is effectively homogene-
ous). Now let us invoke the ‘‘nodes-links-blobs” picture
[9,10], in which the incipient infinite cluster is a network
of effective chains, connected to one another at effective
vertices, called nodes. For our purposes, it is adequate to
treat the effective chains as quasi-one-dimensional ob-
jects having some average thickness. The end-to-end dis-
placement of these effective chains has a certain
distribution with a characteristic length scale, which is
presumably identical to the percolation correlation length
&pere- In the absence of external stress, we expect these
chains to exhibit a type of random walk [11], owing to
thermal fluctuations. Therefore, the end-to-end displace-
ments should scale sublinearly with the contour length. In
the language of polymer physics, every effective chain
constitutes a single “thermal blob”; see Fig. 1 and
Ref. [12]. Under a small shear deformation, each chain
is slightly stretched or compressed, thus contributing kgT
to the shear modulus. As there are roughly f;efc effective
chains per unit volume, the shear modulus should scale as
kpT &y ~ |r|?”, near the critical point. We note that the
shear modulus has dimensions of energy per unit volume;
hence, this scaling is also mandated by dimensional
analysis, provided that &, is the only important length
scale near the transition.
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FIG. 1 (color online). The infinite cluster is a network of
effective chains: (a) In a dense melt each effective chain is
one single thermal blob with typical size £, and contributes
kgT to the shear rigidity. (b) In a phantom network each chain
is sequence of “‘tension blobs” (dashed circles), each of size
&ien- Each tension blob contributes kg7 to the shear rigidity.

Let us now consider typical numerical simulations of
phantom networks, i.e., systems without interparticle
repulsions. The crucial observation, made above, that
the equilibrium conformations of the effective chains
are unstretched random walks (i.e., “thermal blobs”)
with typical size & ... now breaks down for the following
reason. In such simulations, the sol fraction (i.e., the finite
clusters) are usually removed completely, as they do not
interact with the gel fraction. The resulting gel is very
sparse and tends to collapse so as to maximize the en-
tropy. To prevent this, the system size is usually fixed
during shear deformation. Consequently, long effective
chains are strongly stretched. The conformation of the
infinite cluster is such that the net entropic force at each
node vanishes; i.e., the cluster is statistically in mechani-
cal equilibrium. Therefore, the mean tension S carried by
each chain has the same order of magnitude. As shown in
Fig. 1(b), S defines a length scale, &, = kgT/S, beyond
which chain conformations are dominated by tension,
and are thus effectively straight. By contrast, within &,
thermal fluctuations dominate, so that chain conforma-
tions are random walks. &, is, by definition, the typical
size of a “‘tension blob”’ [13] for a polymer under tension
S. Near the critical point, &, is much smaller than &,
which diverges as |r|~”. It follows that the number of
tension blobs on each chain, as well as the chain’s end-to-
end displacement, scales linearly with its contour length
in a phantom network. Under a shear deformation, every
tension blob contributes kg7 to the overall shear rigidity
[13]. Therefore, a typical chain, comprising many tension
blobs, contributes a term to the total shear rigidity that is
proportional to its contour length. This should be con-
trasted with the case of melt, in which every chain con-
tributes kgT, independent of its contour length. In a
coarse-grained description, we may replace every tension
blob by a mechanical spring of natural length zero and
force constant kyT/£Z,, without changing the elasticity.
The resulting model is a randomly diluted network of
mechanical springs of zero natural length at zero tem-
perature, which can be mapped into the randomly diluted
resistance network model [14]. In this mapping, the coor-
dinates of nodes are mapped into voltages, and the shear
modulus into the conductivity. Therefore the shear modu-
lus of a randomly diluted entropic phantom network is
equivalent to the conductivity of a random resistor net-

work, as de Gennes conjectured and many numerical
simulations have supported.

Analytical reasoning.—We have extended the Landau
theory for the elasticity of vulcanized matter [2] to the
case of tunable repulsive interactions [15]. The relevant
order parameter is the (1 + n)-fold replicated particle
density distribution, less its expectation value in the
liquid phase:

Q®) = Qx% x!L, ..., x") ?3)

N
= D8 = ¢)(8(x" —¢)))- - (6(x" —¢e;)] — V””
=1

Here, £ is shorthand for (1 + n) d-dimensional vectors
(x0 x!, x"); ¢; labels the position of the jth particle in
the system, () denotes a thermal average over the mea-
surement ensemble [16], and [ ] denotes the average over
the cross-linking realization (i.e., the quenched disorder),
as well as the thermal fluctuations of the preparation
ensemble. () can be interpreted as giving the joint proba-
bility density function (PDF) that a particle is located at
x" in the preparation state and is later found at positions
x!,...,x"in n independent measurements in the mea-
surement state. (%) encodes a great deal of information
about random solid state. In particular, the particle den-
sity fluctuations of the preparation and measurement
states are, respectively, given by

0% = STo— )= NV, ()
=
N

Q%(x) = > [(8(x = ¢;)] = N/V, (4b)
=

0(x) = / [T dx00). (40)

B(#a)=0

In the liquid phase, all particles are delocalized, i.e.,
(6(x* — ¢;)y = V™! for all j. This ensures that the order
parameter ()(%) vanishes identically. In the gel phase,
however, a certain fraction of particles belongs to an
infinite cluster and is localized. If such a particle were
at position x° in the preparation state, it would fluctuate
around the same point in the measurement state (modulo a
global translation and rotation that are common to the
system as a whole). This is captured by a nonzero expec-
tation value of the joint PDF (3) in the gel phase.

The Landau free energy functional comprises one part
concerning localization and another describing density
fluctuations. The localization part accounts for the effects
of cross-links, and is given by

f dx{ 2+ %o w0y

Z(Vamz )
&)

where V? and V¢ are, respectively, derivatives with re-
spect to x” and x®. The parameter r controls the cross-
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link density and drives the transition to the random solid
state, whereas K, and K, respectively, measure the
stretchability of polymer chains in the preparation and
measurement states (the larger the K’s, the softer the
chains). The free energy cost for density fluctuations
depends only on one-replica quantities, 1%(x¢), and is

_ Bo 0()0(x0)2 B < 2
= _I__ o o o
Hp 5 ]dx Q9(xY) 3 az_lfdx Qe(x*)?, (6)

where the non-negative parameters B, and B are, respec-
tively, the compressibilities of the system in the prepara-
tion and measurement states. A large value of B, would
ensure that the system is cross-linked in a state with
almost uniform density profile, i.e., vanishingly small
fluctuations in Q°. On the other hand, B characterizes
the repulsive interactions between particles in the mea-
surement state. In a typical vulcanization experiment on a
concentrated solution or melt, both B, and B are large, so
that the density remains essentially uniform across the
transition. It is important, however, to realize that B, and
B are separately adjustable (as are K, and K), e.g., via
tuning the solvent quality before and after cross-linking.
For gelation, the network formation process commonly
lasts for an extended period. As a result, B may differ
from B, even by a large factor (e.g., due to correlations
built up during the course of the chemical reaction), even
if all external physical conditions remain unchanged.

In strong contrast, in typical numerical simulations of
phantom systems, all polymers (or particles) are ascribed
to lattice sites, and then cross-links are randomly intro-
duced, connecting some neighboring particles. After re-
moving the sol part, the system is allowed to relax at
nonzero temperature, with intracluster repulsion com-
pletely ignored. This corresponds to a large positive value
for B but a vanishing value of B. As we shall soon see, it
is this qualitative difference between B, and B that is
responsible for conductivitylike scaling of the shear
modulus in phantom networks.

To study the elastic properties, we consider deforming
the system after cross-links have been introduced. As
shown in Fig. 2, this amounts to making an affine change
A of the boundaries for measurement replicas (1 through
n), leaving the preparation replica intact. It is convenient
to then make the linear coordinate transformation

c¥*— A -c? X¥— A - x9, forl=a=n ()

which restores the original boundary conditions for the n
measurement replicas. Under this transformation, Hj, of
Eq. (6), is unchanged, provided we redefine B appropri-
ately. As for Hy, Eq. (5), we find that all terms are
invariant under the transformation (in the n — 0 limit),
except for the term with coefficient K, which becomes

K wear oK S 1% veaven, s
Eaz::l( )ﬁazgabz a b ()

a,b=1 a=1

where g is the metric tensor defined in Eq. (1).

o=0

FIG. 2.  Shear deformation (full vs dotted lines) is applied to
measurement but not preparation replicas. After the coordinate
transformation, the original boundaries are recovered at the
cost of introducing a nontrivial metric tensor.

The effects of fluctuations, both thermal and quenched,
are studied by averaging over all order-parameter con-
figurations. Then the disordered-averaged physical free
energy [F] is related to the (1 + n)-fold replicated parti-
tion function Z;, by

[F]= —1limd,InZ,,, = —limanlnfDQe_HH",
n—0 n—0

where H;,, (= Hp + Hy) is the full effective [18]
Hamiltonian; see Ref. [19].

A renormalization-group (RG) analysis of the full
model, described by H,,,, will be presented in a future
publication [15]. Here, we present results for only two
limiting cases: (a) By = B = +00, i.e., vulcanization in
an incompressible polymer melt; and (b) By = +oo but
B =0, i.e., phantom networks. We apply a momentum-
shell RG transformation, thus integrating out short
length-scale fluctuations recursively, while rescaling the
order-parameter field {) and spatial coordinates such that
K, and K remain unity. The renormalizations of r and v
are independent of B and g, i.e., the parameters describing
the measurement ensemble. To one-loop order

dr _ 1, v? dv 1 7T 5
] r<2+6v>+2, T 26U 4v, 9)
where € = 6 — d. For d <6 there is a nontrivial fixed
point at (r*, v*?) = (e/14,2¢€/7). Correspondingly, the
critical exponents (7, ») are given by (—3;€ 1+ e,
which agree with results from the e expansion for the
percolation transition [20].

The flow of g determines the elastic properties.
Expressing g as gg, where g has unit determinant [so
that g? = det(g)] we find that, regardless of the value of
B, g does not flow. Therefore, renormalization of the
metric g is completely controlled by its determinant.
For B = B, = +00, we find the flow equation

dg _2 , 3
2 =—-v(l . 10
dl 3U ( 8)g (10)

For d < 6, v> — v*?> = 2¢/7 > 0; hence g flows to unity.
Qualitatively, this implies a symmetry between the prepa-
ration and measurement ensembles. It also suggests that
the correlation length & is the only relevant length
scale, in agreement with the preceding heuristic argu-
ment that, in a dense melt, each effective chain consti-
tutes a single thermal blob of typical size &p... Near the
fixed point, the singular part of the free energy (i.e., the
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elastic free energy) has the scaling form

fo =11y (g") = 179 (8). (11)

As the shear modulus is given by an appropriate derivative
of f, with respect to g [cf. Eq. (1)], we immediately see
that it scales as |r|?”.
For the second case, viz., (By, B) = (+, 0), we find
dg _ 2

4
“vlg— —eg.

12
dl 3 21 (12)

Now g, and also the metric tensor g, are relevant near the
percolation fixed point, with a positive crossover exponent
¢, of 4€/21, echoing our heuristic argument that effec-
tive chains are strongly stretched in a phantom network.
In general, the singular part of free energy should then
have the scaling form

fo = 1r1 (g /1r1%s). 13)

For a pure shear with det(g) = 1, this f, must agree with
Eq. (1), up to a constant independent of g. Therefore the
shear-modulus exponent is given by dv — ¢, = 3 — 25—1 €,
which, to the same order in €, is identical to the con-
ductivity exponent of a random resistor network [20].

This equivalence between critical exponents of phan-
tom elastic networks and random resistor networks
should, in fact, hold to all orders in €. To see this analyti-
cally, we note that setting (By, B) = (o0,0) in Hp is
equivalent to setting By = B = 0, together with the
hard constraint Q°(x) = 0, which explicitly excludes
configurations having nonzero density fluctuations in
the preparation ensemble. The resulting model then be-
comes formally identical to the Harris-Lubensky formu-
lation of the random resistor network problem [20], with
the nd (— 0) coordinates associated with the measure-
ment ensembles (x!, ..., x") mapped onto the D (— 0)
replicated voltages ¢, provided the stated limits are
taken. Thus, the pair of systems are governed by identical
RG equations and, hence, critical exponents.

Having established the two limiting cases, B = oo and
B = 0, it is natural to ask which one is the more stable. As
B, like r, has naive dimension 2, it is always relevant near
six dimensions. Therefore, if we keep B, large and tune B
to be small, the shear-modulus exponent should cross
over—from the conductivity one, ¢, to the incompressible
system one, dv—when |r| becomes smaller than B. This
can be readily realized in a numerical simulation, if one
were to retain the sol part of the system and turn on a
small repulsion. In principle, this crossover might also be
observed in gelation experiments on nondense solutions,
provided |r]| is sufficiently small.
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