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Collective Diffusion Model for Water Permeation through Microscopic Channels
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Water permeation through nanometric channels, generally a coupled many-body process, is described
in this study by a single collective coordinate. A collective diffusion model is proposed in which water
movement at equilibrium is characterized as an unbiased diffusion along this coordinate and water
transport in the presence of a chemical potential difference is described as one-dimensional diffusion in
a linear potential. The model allows one to determine the osmotic permeability of a water channel from
equilibrium simulations.
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Water channels are ubiquitous in all life forms. For
some biological channels, such as aquaporins [1], perme-
ation of water is the primary physiological function.
Many other channels designed for conducting substrates
such as ions are water filled and permeate water as well.
Water permeation through these biological channels has
been the topic of theoretical and experimental studies for
many years [2]. Molecular dynamics (MD) simulations
provide an ideal tool for investigating water transport
through channels [3], since the movement of every single
water molecule can be closely monitored in the simula-
tions. Here we propose a collective diffusion model to
characterize water movement in channels under equilib-
rium and nonequilibrium conditions. The model allows
one to analyze MD simulations in terms of the major
experimental quantity of a water channel, namely, the
osmotic permeability.

The osmotic permeability of a channel, pf (cm3=s), is
defined through [2]

jW � pf�CS; (1)

where �CS (mol=cm3) is the concentration difference of
an impermeant solute between the two reservoirs con-
nected by the channel, and jW (mol=s) is the net molar
water flux through the channel. Water flows from the
reservoir with the lower solute concentration to the other
reservoir because the two have different chemical poten-
tials (the difference denoted as �	) for water. For dilute
solutions �	 is linearly proportional to �CS [2]:

�	 � �kBTVW�CS; (2)

where VW (18 cm3=mol) is the molar volume of water.
Therefore, pf is determined by the linear coefficient
relating water flux and �	.

Following its definition, pf is measured in experiments
under nonequilibrium conditions, for systems with non-
zero �	. In principle, �	 can be established in nonequi-
librium MD simulations through an osmotic [4] or a
hydrostatic [5,6] pressure difference across the channel.
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Because of the presently limited (ns) time scale of MD
simulations, however, one has to adopt a large �	 to
obtain sufficient statistics of water permeation. This leads
to situations that are far from actual experimental con-
ditions, and it is not clear whether the results represent the
normal kinetics of the water channel under study. If one
can establish a quantitative relationship between water
conduction under equilibrium and nonequilibrium condi-
tions, this problem can be circumvented. In fact, even
equilibrium MD simulations (�	 � 0) can be used to
characterize the osmotic permeability of a channel, as we
demonstrate below.

Water permeation in a channel usually involves mul-
tiple water molecules whose movements are coupled to
each other. As a result, a complicated multidimensional
representation seems to be necessary to model this pro-
cess. In the following, we introduce a collective coordi-
nate, n, which offers a much simplified description of
water translocation in channels.

Consider a channel (of length L) aligned along the z
direction. The collective coordinate n is defined in its
differential form as follows: Let S�t� denote the set of
water molecules in the channel at time t, and let us
assume that the displacement of water molecule i in the
z direction during dt is dzi; then we define

dn �
X

i2S�t�

dzi=L: (3)

By demanding n � 0 at t � 0, n�t� can be uniquely de-
termined by integrating dn. Note that S�t� changes with
time, and that a water molecule i contributes to n only
when it is in the channel, i.e., if i 2 S�t� at time t. We
further note that every water molecule crossing the chan-
nel from one reservoir to the other contributes to n a total
increment of exactly �1 or �1. Therefore, n quantifies
the net amount of water permeation, and the trajectory
n�t� describes the time evolution of the permeation.

An important scenario is the stationary state in which a
steady water flux through the channel exists. In this case,
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n�t� on average grows linearly with t, and the water flux is
given by

jW �
1

NA
jn �

1

NA
hn�t�i=t; (4)

where NA is Avogadro’s number, and jn � NAjW is the
water flux in the unit of number of water molecules/
second.

At equilibrium, the net amount of water permeation
through the channel vanishes on average, i.e., hn�t�i � 0.
Spontaneous, random water transport, however, may oc-
cur due to thermal fluctuation. Such microscopic fluctua-
tions may not be detectable in experiments, but can be
observed readily in MD simulations through n�t�. At
equilibrium, n�t� can be described as a one-dimensional
unbiased random walk. It can be shown that when t is
much longer than the velocity correlation time of n, the
mean square displacement (MSD) of n, hn2�t�i, obeys the
Einstein relation [7]

hn2�t�i � 2Dnt; (5)

where Dn is defined as the diffusion coefficient of n. Dn
has dimension t�1 since n is dimensionless. All factors
affecting water kinetics contribute to Dn and are effec-
tively integrated into this single parameter.

In the presence of a chemical potential difference (�	)
of water between the two reservoirs, a water flux through
the channel arises and adopts quickly a steady value, and
the configurations of channel water reach a stationary
state. We further assume that in such stationary state
channel water adopts properties (such as density and
order) that are essentially independent of �	 and very
close to the equilibrium properties. This assumption does
not necessarily require �	 to be small compared to kBT;
it can be satisfied for liquid water even when �	 exceeds
kBT. In the stationary state, the change in free energy of
the system is solely due to water transport between the
two reservoirs, because the state of channel water does not
change with time. Since the net transport of one water
molecule from one reservoir to the other results in a
change of 	�	 in the free energy, the total free energy
change is proportional to the net amount of water trans-
ported, i.e.,

U�n� � �	 
 n: (6)

Since the stationary configurations (in terms of rele-
vant properties) of the channel water are assumed to be
very close to the equilibrium condition, one may use the
equilibrium value of Dn to characterize the biased ran-
dom walk of n in this case. Since the evolution of n can be
described as a one-dimensional diffusion in a linear
potential [cf. Eq. (6)], n on average is drifting with a
constant velocity [9]:
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hn�t�i � �
�	
kBT

Dnt: (7)

Such behavior is indeed expected for a stationary condi-
tion. According to Eq. (4), the steady water flux is then
given by

jn � �
�	
kBT

Dn: (8)

From Eqs. (1), (2), (4), and (8) one obtains then for the
osmotic permeability of the channel

pf � vWDn; (9)

where vW � VW=NA is the average volume of a single
water molecule. Equation (9) shows that one can deter-
mine pf using the Dn value obtained from equilibrium
MD simulations [cf. Eq. (5)].

Recently, a continuous-time random-walk (CTRW)
model [10] was proposed for a special type of channel,
namely, a single-file water channel. This model assumes
that the whole water file moves in discrete hops simulta-
neously and concertedly, with rightward and leftward
hopping rates measuring both k0 at equilibrium, k0 being
the single kinetic parameter in the CTRW model. Since
each hop changes the collective coordinate, n, by �1 or
�1, it holds n�t� � mr�t� �ml�t�, where mr�t� and ml�t�
are the numbers of rightward and leftward hops during
time t, respectively. Because mr�t� and ml�t� obey a
Poisson distribution whose mean and variance are both
k0t at equilibrium [5], one obtains hn2�t�i � 2k0t.
Comparison with Eq. (5) yields Dn � k0. Therefore, for
the discrete water movement described by the CTRW
model, Dn is identical to the hopping rate k0, and the
expression derived from the CTRW model, namely, pf �
vWk0 [5], is actually equivalent to Eq. (9) in our collective
diffusion model. However, unlike the CTRW model, the
applicability of the collective diffusion model is not
limited to single-file water channels.

In order to test the validity of the collective diffusion
model, we performed a series of MD simulations on two
exemplary membrane channel systems, denoted as a and
b, respectively (Fig. 1). In each system, two layers of
carbon atoms mimicking a membrane were used to par-
tition the bulk water; a carbon nanotube (CNT) was
embedded in the membrane to serve as a water channel.
The CNT in system a is of the �6; 6� armchair type with a
C-C diameter of �8 A. Previous simulations [11,12]
showed that this CNT conducts water strictly in a
single-file manner. The CNT in system b is of the
�15; 15� armchair type with a C-C diameter of �20 A,
filled with disordered, bulklike water molecules. Systems
a and b contain 276 (�5 in pore) and 1923 (�90 in pore)
water molecules, respectively. The length of the channel
is L � 13:2 A in both systems.
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FIG. 1. Side view of the unit cells in systems a and b, with
dimensions of 18:0 A 18:0 A 41:4 A and 46:0 A
46:0 A 42:1 A, respectively. Half of the CNT channels and
the membranes are removed in order to reveal water molecules
in the channels. The dashed lines and the bars indicate the
layers where constant forces were applied to the water mole-
cules in nonequilibrium simulations (see text). This figure was
rendered by VMD [20].
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All simulations were performed under periodic bound-
ary conditions with constant volume. The tempera-
ture was kept constant (T � 300 K) by Langevin dynam-
ics with a damping coefficient of 5=ps. The CNT and
the membrane were fixed in all simulations. The TIP3P

model [13] was used for water molecules. We employed
the MD program NAMD2 [14] for the simulations, with
full electrostatics calculated by the particle-mesh-Ewald
method [15].

Equilibrium MD simulations of 40 and 20 ns were
performed on systems a and b, respectively, with coor-
dinates recorded every picosecond. We took the sum of
one-dimensional displacements of all water molecules
in the channel, divided by L, as the displacement �n in
each picosecond [cf. Eq. (3)]. If a water molecule enters or
exits the channel within a picosecond, only the portion of
its displacement within the channel contributes to the
sum. The trajectories of n�t�, as shown in Fig. 2, were
obtained by summing up (integrating) the �n values as
t (ns)

n
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FIG. 2. Trajectories of n for equilibrium MD simulations of
systems a and b.

224501
explained above. The MSD of n for each system is pre-
sented in Fig. 3. According to Eq. (5), the diffusion
coefficientDn is one-half of the slope of the MSD-t curve.
From the best-fit slopes, theDn values were determined to
be �16:5	 2:1�=ns and �524	 40�=ns for systems a and b,
respectively.

To demonstrate the validity of Eq. (8) we performed
nonequilibrium simulations in the presence of a chemical
potential difference (�	) of water across the membrane.
This was achieved by using a method proposed recently
[5], in which a constant force f along the z direction is
exerted on all water molecules in a defined layer (with
thickness d) of the bulk region. The application of f
induces a hydrostatic pressure difference (�P), which
corresponds to a chemical potential difference �	 �
fd across the membrane. Because of the equivalence
between hydrostatic pressure and osmotic pressure, this
setup can be used to calculate the osmotic permeability
(pf) of the channel. We refer the reader to [5] for a
detailed explanation of the method. The defined layers
in systems a and b are shown in Fig. 1, with thicknesses
d � 7:4 A and d � 8:1 A, respectively. By choosing a
proper f, one can select any desired value for �	. For
each system, we performed six nonequilibrium simula-
tions, with �	 set to 0:2kBT, 0:5kBT, 1kBT, 2kBT, 5kBT,
and 10kBT. The simulation times (1–40 ns) varied in
different simulations, but were long enough to observe a
net transport of at least 100 water molecules in each case.

Figure 4 shows both the predicted water flux (solid
lines) from Eq. (8) and the observed water flux (squares)
in the simulations, from which one can discern excellent
agreement between predictions and simulations. It is re-
markable that the water flux induced by a �	 as large as
10kBT can still be predicted by the Dn value determined
t (ps)
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FIG. 3. Mean square displacements (MSDs) of n for systems
a and b. For each system, the trajectory n�t� shown in Fig. 2
was evenly divided into M (400 for system a, 1000 for system
b) short time periods. n�t� in each period was treated as an
independent subtrajectory ni�t�, and was shifted so that
ni�t�jt�0 � 0. The average over n2i �t� (i � 1; . . . ;M) was then
taken as MSD(t). A line with the best-fit slope was super-
imposed on each MSD curve.

-3



0 0.5 1
0

10

20

0 5 10
0

100

200

0 0.5 1
0

200

400

600

0 5 10
0

2000

4000

6000

∆µ/kBT

j n 
(/

ns
)

a a

b b

FIG. 4. The dependence of water flux (jn) on the chemical
potential difference (�	) of water. Each data point (marked as
a square) represents the jn value obtained from a nonequilib-
rium simulation, by dividing the total displacement of n in the
simulation by the simulation time [cf. Eq. (4)]. The solid lines
show the jn-�	 relations predicted from Eq. (8), with Dn �
16:5=ns for system a and Dn � 524=ns for system b, both
values being determined from the equilibrium simulations.
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from equilibrium simulations. In light of this, one is not
surprised that the reported osmotic permeability (pf) of
aquaporin-1 obtained from nonequilibrium simulations
[5] agrees with experimental data despite the fact that the
�	 values (�1kBT) in the simulations were much larger
than experimental values (<0:01kBT).

We note that Eq. (8) holds only under the assumed near-
equilibrium condition. When �	 is so large that the
configurations of channel water deviate notably from
equilibrium configurations, the evolution of n can no
longer be described by Dn, and the dependence of jn on
�	 will deviate from linearity. In the present case, due to
the large incompressibility of liquid water, water configu-
rations in the channel change insignificantly with �P (or
�	) even when �	 exceeds kBT. As a result, the equi-
libriumDn describes water kinetics well and jn is found to
depend linearly on �	 over a broad range. On the other
hand, one expects a much smaller linear response range
for gas transport through a channel, since gas configura-
tions (such as occupancy) in the channel should be much
more sensitive to �	. Other factors, such as the confor-
mation of the channel, should also be affected by �	 and
may in turn affect water configurations. For example, in
previous simulations [5,6] we observed the blockage of
aquaporin channels under large �P. Therefore, a real
water channel may not have as large a linear response
range as the fixed CNTs in the present case. In general, no
universal conclusion on the jn-�	 relationship can be
made for systems far from equilibrium.

In summary, the collective diffusion model establishes
a quantitative relationship between the spontaneous water
transport at equilibrium and the stationary water flux
under nonequilibrium conditions. Using this model, the
major experimental quantity for water channels, pf, can
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be determined readily from equilibrium MD simula-
tions. In light of the many recent MD simulations of
water transport through biological [3,16–18] and artifi-
cial [11,12,19] channels, the collective diffusion model
should establish a valuable analysis tool.
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