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Radial Segregation Patterns in Rotating Granular Mixtures: Waviness Selection

K. M. Hill, G. Gioia, and D. Amaravadi
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801, USA

(Received 22 December 2003; revised manuscript received 26 August 2004; published 22 November 2004)
0031-9007=
We model the radial segregation patterns that form in a thin rotating drum partially filled with beads
of two sizes. We predict that the waviness (or amplitude-to-wavelength ratio, denoted w) of a pattern
should be subjected to low-pass filtering with a cutoff waviness wc that depends strongly on the fill level
of the drum. Then we perform experiments and find that w � wc for all patterns, in accord with our
prediction.We also find that w � wc for (and only for) steady patterns, and conclude that the waviness of
a steady pattern is selected by the low-pass filtering.
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FIG. 1. (a) The drum partially filled with well mixed black
and white beads. The drum after (b) 1/4 rotation, (c) 1/2
rotation (moon pattern), (d) one rotation, (e) two rotations,
(f) three rotations, (g) four rotations, and (h) many rotations
(steady sun pattern). In these experiments the free surface
remains flat and steady as the drum rotates.
When a granular mixture is vibrated or made to flow, it
segregates by the type of grain [1]. For instance, if a bed
of grains of different sizes is sheared parallel to the top
surface, the larger grains segregate to the surface of the
bed and the smaller ones to the bottom [2]. In Nature, this
form of granular segregation might explain why the
gravelly bed of a piedmont stream is frequently topped
with a self-organized, stabilizing armour layer com-
posed of the largest rocks in the bed [3]. Granular segre-
gation also occurs in numerous industrial processes, often
with undesirable effects [4]. To study granular segrega-
tion, some researchers have used a thin rotating drum
partially filled with beads of different sizes. Within the
first rotation of the drum, a radial segregation pattern
forms [Fig. 1(a)–1(c)] [5]. The pattern of Fig. 1(c) forms
for all fill levels of the drum; we call it a moon pattern
because it reminds us of an ashy moon on a dark sky. For
most fill levels, the moon pattern appears to be steady [6].
Yet for fill levels close to 1/2 the moon pattern evolves
through a series of transient, increasingly wavy, striped
segregation patterns or sun patterns as the rotation con-
tinues [Figs. 1(d)–1(g)] [7]. Upon attaining a value that
depends strongly on the fill level, the waviness ceases to
increase, and a sun pattern of the selected waviness
remains steady thereafter [Fig. 1(h)] [6,7]. Here we de-
velop a model of waviness selection in sun patterns. In
developing our model, we are led to identify the waviness
of a sun pattern (as yet a loose visual descriptor) with the
amplitude-to-wavelength ratio of its stripes. We find that
in contrast to many systems in which a wavelength is
selected at the onset of a runaway process (often embod-
ied by an eigenproblem), in sun patterns the waviness is
selected when a low-pass filter arrests a runaway process
of waviness amplification. To test our findings, we per-
form experiments and compare the results with the pre-
dictions of the model.

In our experiments we use an acrylic drum (of radius
R � 15 cm and thickness 8 mm) filled with water [8]
and, up to a distance R� d measured from the bottom
of the drum, with a mixture of glass beads (Jaygo Inc.,
04=93(22)=224301(4)$22.50 224301
NJ; � � 2:54 g=cm3) [Fig. 2(a)]. The average composition
of the mixture is 40% 3 mm black beads and 60% 1 mm
white beads, by volume (measured by weight). We rotate
the drum about its axis with an angular velocity 
 �
1 rpm and take pictures at regular intervals (e.g., Fig. 1).
By processing these pictures [9], we obtain an index of
the waviness, p2=A, where p is the perimeter of the
segregation pattern and A is the area contained within
the perimeter. Figure 2(b) shows a plot of p2=A vs the
number of rotations for a fill level close to 1=2; within a
few tens of rotations, p2=A attains a steady value that
depends strongly on the fill level [Fig. 2(c)].

To shed light on these results, we start by describing
how the beads move in the rotating drum. The beads move
relative to one another only in a shallow surficial layer of
maximum depth b known as the flowing layer [Fig. 3(a)]
[10]. Below the flowing layer the beads—and, with the
beads, the segregation pattern—move in solidlike rota-
tion with the drum. The flowing layer exchanges beads
with the stratum below through the arc PMQ of Fig. 3(a).
The beads positioned along the arc PM can be said to be
thawing as they enter the flowing layer and cease to move
in solidlike rotation with the drum. Thus we call PM the
thawing arc and the flux of beads that enters the flowing
-1  2004 The American Physical Society
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FIG. 4. (a) LM is the thawing line, MR is the freezing line.
Here M is below the axis of the drum (d0 < 0). Beads that
freeze at the same time remain on a straight line (b) as they
rotate with the drum (c). (d) Idealized sun pattern. The value of
x pertains to the moon pattern [Fig. 3(c)]. This figure shows the
sequence in which the beads leave and reenter the flowing layer
for d0 < 0. If we turn the page upside down, this same figure

FIG. 2. (a) The drum filled to a distance R� d measured
from the bottom of the drum. The ratio �1 � d=R � 1 char-
acterizes the fill level of the drum; if d=R � 0 the fill level is
1=2. (b) p2=A vs the number of rotations of the drum for a fill
level close to 1/2. (c) The steady value of p2=A vs d=R for a
range of fill levels. The steady value of p2=A peaks for a fill
level slightly higher than 1=2 (d=R � 0:1). For a moon pattern
at a fill level of 1=2, p2=A � 2�2� ��2=� 	 17.
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layer through PM the thawing flux. Likewise, we callMQ
the freezing arc and the flux of beads that leaves the
flowing layer through MQ the freezing flux. Consider
now the experiment of Figs. 1(a)–1(c). Since the black
and the white beads are initially well mixed, they enter
the flowing layer in a thawing flux of constant composi-
tion (i.e., a thawing flux whose average composition is
constant in time). As they move in the flowing layer the
larger (black) beads segregate to the upper part of the
layer, and the smaller beads to the lower part. When these
beads leave the flowing layer, they begin to form a moon
pattern [Fig. 3(b)]; when they reenter the flowing layer
(again in a thawing flux of constant composition), the
moon pattern becomes complete [Figs. 3(c) and 3(d)].
This argument [5] explains the formation of moon pat-
terns for all fill levels. For future reference, we stress that
a thawing flux of constant composition leads to the rapid
formation of a moon pattern.

Before turning to the sun patterns, we simplify the
geometry of the thawing and freezing arcs. We substitute
the thawing arc PM with the straight thawing line LM
and the freezing arc MQ with the straight freezing line
MR [Fig. 4(a)]. The thawing and freezing lines are par-
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FIG. 3. (a) The flowing layer of maximum depth b is bounded
by the free surface PQ and by the arc PMQ. The point O
represents the axis of the drum. (b) A partially formed moon
pattern. (c) A moon pattern. The value of x depends on the fill
level, the average composition of the mixture, and b. (d) If d >
b, the moon pattern includes a circle (with center at the axis of
the drum) containing mixed beads that never enter the flowing
layer; cf. the pictures of Fig. 2(c).
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allel to the free surface at a distance jd0j from the axis of
the drum, where d0 � d� b. The beads positioned along
the freezing line MR at a given time remain on a straight
line while they rotate with the drum [Figs. 4(b) and 4(c)].

Consider now the idealized sun pattern of Fig. 4(d). For
a time interval T=2, the beads that leave the flowing layer
will show the sequence in which the beads leave and reenter the
flowing layer for d0 > 0 (but with the thawing line on the right
and the freezing line on the left). Because the geometry is the
same regardless of the sign of d0, the equations that we derive
based on this geometry apply to all fill levels. (e) A bead that
freezes at a distance x–� to the right ofM thaws at distance x–�
to the left of M. Suppose that two beads freeze simultaneously,
the 1st at � � 0 and the 2nd at � � �0; if the 1st thaws at a time
t, the 2nd thaws at a time t� ���0�, where ���� � 2� sin�=v.
(f) Plots of r vs j j for cf equal to one term (curve A) and 20
terms (curve B) of the Fourier expansion of ST�t�. Curve C is an
idealization of B. A high w gives a thawing flux of constant
composition (g), and a low w a thawing flux of oscillating
composition (h).
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FIG. 5. A comparison of the predictions of the model with
the experimental results. The curve represents the predicted
cutoff waviness. Each point represents an experimental mea-
surement. Points with the same �d–b�=x correspond to the same
experiment; successive points with the same �d–b�=x approach
the cutoff waviness as the pattern in the experiment becomes
steady.
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through the segment �x of the freezing line are black;
then, for a time interval T=2, these beads are white, and so
on in a cyclic fashion. Thus the beads leave the flowing
layer in a freezing flux of oscillating composition. The
stripes unfold in the fanlike arrangement of Fig. 4(c);
they have an amplitude �x and a wavelength  � vT,
where v � 
x sec� [Fig. 4(d)]. Figure 4(e) illustrates the
sequence in which the beads of Fig. 4(d) leave (and later
reenter) the flowing layer.

With the help of Fig. 4(e), we seek a mathematical
characterization of the thawing and freezing fluxes. We
start by defining the local composition �1 � c � 1 of a
mixture in the form c � fb � fw, where fb and fw is the
local volume fraction of black and white beads, respec-
tively. On the freezing (or thawing) line, the local com-
position c may be a function of the position � and the time
t; c � c��; t�. [For the idealized sun pattern of Fig. 4, on
the freezing line c � cf��; t� � ST�t�, where ST�t� is an
oscillating square function of amplitude 2 and period T,
and on the thawing line c � ct��; t� � ST�t� �����,
where ���� � 2� sin�=v is a time shift; see the caption
to Fig. 4(e)]. The flux of c advected through the segment
�x of the freezing (or thawing) line is ’�t� �

vn
R�x=2
��x=2 c��; t�d�, where vn � 
x is the component of

v normal to the freezing (or thawing) line [11]. The mean
value of ’�t�, h’i � �1=T�

R
T
0 ’�t�dt, is zero, because in

the idealized sun pattern the white stripes have the same
volume as the black stripes [12]. On the other hand, the

root mean square of ’�t�,
���������
h’2i

p
�

�����������������������������������
�1=T�

R
T
0 ’

2�t�dt
q

, is
zero for a flux of constant composition, but positive for a
flux of oscillating composition, and provides a measure of
the amplitude of the compositional oscillations of the flux
’�t�. Thus, if ’f�t� is the freezing flux and ’t�t� is the

thawing flux, r �
���������������������
h’2

t i=h’2
fi

q
measures the extent to

which the compositional oscillations of the freezing flux
carry over to the thawing flux. (For example, r < 1 in-
dicates that the fluxes becomes less oscillating with each
freezing-and-thawing cycle.) To compute r, we take
cf��; t� � 4 cos�2�t=T�=� [the first term in the Fourier
expansion of ST�t�], and therefore ct��; t� � 4 cos�2��t�
�����=T=�, where ���� � 2� sin�=v. The result is r �
sinj j=j j, where  � 2�w sin� and w � �x= , i.e., the
amplitude-to-wavelength ratio or waviness. Curve A in
Fig. 4(f) is a plot of r vs j j. We have also computed r by
taking cf equal to the first 20 terms in the Fourier
expansion of ST�t�, with a similar result [curve B in
Fig. 4(f)]. In both curves A and B r equals one and is
stationary for j j � 0, and then r decreases for increasing
values of j j. Thus, except for small values of j j for
which r 	 1, r < 1 and the flux tends to become less
oscillating with each freezing-and-thawing cycle. For
simplicity, we choose a  c and assume r � 1 for j j<
 c and r � 0 for j j> c [curve C in Fig. 4(f)]. With the
reasonable choice  c � �=5, this translates into r � 1 for
224301
w<wc and r � 0 for w>wc, where wc � j csc�j=10 or

wc �
1

10

�����������������������������
1�

�
x

d� b

�
2

s
: (1)

Forw>wc, r � 0 and the beads enter the flowing layer in
a thawing flux of constant composition [to see this point,
it is helpful to study a case with very high waviness, e.g.,
Fig. 4(g)], leading to the rapid formation of a moon
pattern. Thus, a sun pattern of waviness w>wc is wiped
out. On the other hand, for w<wc, r � 1 and the beads
enter the flowing layer in a thawing flux of oscillating
composition [to see this point, it is helpful to study a case
with very low waviness, e.g., Fig. 4(h)]. Thus, a sun
pattern of waviness w<wc may persist. We conclude
that the waviness of a sun pattern is subjected to low-
pass filtering with the cutoff waviness wc given by (1).
The cutoff waviness depends on the fill level, the average
composition of the mixture, and the depth of the flowing
layer through the variables d, x, and b. The peak value of
wc occurs for d � b (or d0 � 0). This is consistent with
the experiments of Fig. 2(c), in which w peaks for d �
0:1R; in fact, we have measured the depth of the flowing
layer to be b 	 0:1R in those experiments.

To test these predictions, we compute d0 � d� b (us-
ing b � 0:1R), d0=x, and w [13] for each of the patterns,
transient or steady, that we photographed in the experi-
ments of Fig. 2(c). Then, we plot the point �w; d0=x� for
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each pattern (Fig. 5) and the curvewc vs d0=x predicted by
the model. The effect of the low-pass filtering is manifest
in Fig. 5: the experimental points lie beneath the theo-
retical curve. Further, for any given value of d0=x the
waviness draws near the cutoff waviness as the pattern
becomes steady [14], indicating that the waviness of a
steady pattern is selected by the low-pass filtering. To
understand how this comes about, we turn our attention
back to Fig. 2(c), in which a moon pattern has just
formed. Now this moon pattern is likely to be slightly
wavy; if the drum continues to rotate, the initially low
waviness will be amplified [Fig. 2(b)]. (The simulations
of Khakhar et al. [7] indicate that the amplification takes
place inside the flowing layer.) By virtue of this amplifi-
cation, the waviness will increase up to the cutoff value
wc, whereupon the filtering will equilibrate the amplifi-
cation, bringing the amplification to an end [15]. (Note
that for most fill levels wc is very low, so that the ampli-
fication will be arrested shortly after the formation of the
moon pattern, which will appear to be steady.)

To summarize: As soon as a moon pattern forms, it is
subjected to waviness amplification and low-pass filter-
ing. In time, the filtering arrests the amplification,
thereby selecting the waviness of the steady sun pattern.
Here we have developed a model of waviness filtering,
ignoring the amplification. We have been able to do so
because the filtering and the amplification are spatially
disjoint: the filtering stems from the way in which the
beads move outside the flowing layer, whereas the ampli-
fication stems from the way in which the beads move
inside the flowing layer [7]. Thus the filtering depends
only on the geometry of the patterns and remains inde-
pendent of the segregation mechanisms that operate in
the flowing layer. On the other hand, the amplification
may depend on the difference in bead sizes, the density
contrast between the beads and the interstitial fluid, and
other factors that pertain to the segregation mechanisms
that operate in the flowing layer. We shall take up the
development of a model of waviness amplification in a
separate paper.
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