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Control of Localization and Suppression of Tunneling by Adiabatic Passage
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We show that a field of frequency ! combined with its second harmonic 2! driving a double-well
potential allows us to localize the wave packet by adiabatic passage, starting from the delocalized
ground state. The relative phase of the fields allows us to choose the well of localization. We can
suppress (and restore) the tunneling subsequently by switching on (and off) abruptly the fields at well-
defined times. The mechanism relies on the fact that the dynamics is driven to an eigenstate of the
Floquet Hamiltonian which is a localized state.
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Generating and controlling coherent superpositions of
states is of great interest, in particular, for the recent
developments of quantum computing [1]. Quantum tun-
neling is a natural example of superpositions of states,
which correspond to spatially localized states. An impor-
tant goal is to achieve the control of driven tunneling (see,
e.g., [2] for a review). Practical realizations can be con-
sidered in coupled multiquantum dot systems that can be
now built experimentally [3]. Enhancement of tunneling
by a nonresonant [4,5] or resonant [6] pulse-shaped field,
and the coherent destruction of tunneling (CDT) [7–11]
by a cw field are well established. The CDT as shown in
[7,8] occurs when the field amplitude allows one to pre-
serve the two bare states j1i and j2i as eigenstates of the
Floquet Hamiltonian (dressed by the field) and to make
the associated quasienergies cross such that the tunneling
time between the two states becomes infinite when the
field is on. The CDT has been differently obtained in
[10,11], when one of the localized states is an eigenstate
of the Floquet Hamiltonian, which requires the coupling
to an asymmetric excited electronic surface jei of similar
amplitudes: jhej�j1ij � jhej�j2ij with � the coupling
operator. The CDT by two fields of different frequencies
has been investigated in [12]. The CDT proposed so far in
the literature is only partially controlled in the sense that
one does not know the state of the system, i.e., the phase �
of the stopped superposition j1i � ei�j2i, since the initial
tunneling state is generally unknown. This can be cir-
cumvented if one can also control the localization from
the initial unlocalized ground state j1i. It has been nu-
merically shown in [13] that the localization is possible
by the use of a pulse quasiresonant between the two
tunneling states, however, under very restrictive condi-
tions of field amplitudes, frequencies, and also absolute
phases.

In this Letter we show a novel mechanism based on
adiabatic passage that allows us to control the localization
(i.e., with the knowledge of the localization time). This
process is robust in the sense that it requires the control of
the peak field amplitudes and frequencies but not of the
absolute phase of the total field, nor of their pulse areas.
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Using subsequently the fields but suddenly switched on
and off, we propose a consistent scheme of control from
localization to suppression of tunneling. The mechanism
is formulated as the preparation of one of the coherent
superpositions j�i � �j1i � j2i	=

���
2

p
in a system of two

near-degenerate bare states fj1i; j2ig of opposite parity.
The key elements of the process are (i) the superpositions
j�i become eigenstates of the Floquet Hamiltonian for
specific field amplitudes and (ii) the pulse shapes allow us
to reach one of the eigenstates from the ground state j1i by
adiabatic passage. Adiabatic passage provides thus a tech-
nique to prepare the system in a localized state at a well-
defined time. More precisely, a field of an appropriate
frequency ! combined with its second harmonic 2!,
coupling the states j1i and j2i by a three-photon process
(initially near-resonant, detuned by the energy difference
� between the two states), will induce dynamical Stark
shifts that will compensate the detuning � for specific
field amplitudes. Adiabatic passage from the initial delo-
calized state j1i leads thus to one of the localized states
whose localization is controlled by the relative phase of
the two fields. The dynamics stays localized as long as the
field amplitudes stay subsequently constant.

This localized state can then be used for other con-
trolled manipulations such as the controlled switching on
and off of the tunneling. In particular, the tunneling
effect can start if the fields are switched off suddenly
(more precisely, on a time scale Toff satisfying �Toff 

1). The tunneling can be suppressed again if the fields are
switched on again but suddenly, at a precisely determined
time given by the period of the free tunneling. The wave
packet can be alternatively redelocalized by adiabatic
passage if the fields are switched off adiabatically.

We first introduce an effective model to analyze the
qualitative aspects of the mechanism, and then we imple-
ment the strategy in a complete model with a double-well
potential.

The key to be able to localize with the laser field
consists first in noticing that the two localized states
j�i are eigenstates of the Floquet Hamiltonian. This
leads then to a strategy to reach them by adiabatic trans-
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FIG. 1 (color online). Schematic diagram of the energy levels:
E1; E2 are the energies of the two bare states j1i; j2i. The arrows
represent the fields of frequencies ! and 2!.
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port. This can be formulated by considering first the
effective two-level system (in a resonant approximation)

Heff�t	 � �h
0 ��t	ei’

��t	e�i’ 	�t	

� �
(1)

in the bare basis fj1i; j2ig, where we assume that the Rabi
frequency ��t	 and the dynamical detuning (including
the relative Stark shift) 	�t	 are both real such that
��t	> 0 and at early times ���1	 � 0, 	��1	 �
� > 0, without loss of generality. In the adiabatic limit,
the propagator contains on its columns the instantaneous
eigenvectors of (1): j �i � ei’ cos��=2	j1i � sin��=2	j2i,

j �i � sin��=2	j1i � e�i’ cos��=2	j2i, Heff�t	 � � �h
2 �

�	�t	 �
��������������������������������
	2�t	 � 4�2�t	

p
� �. It reads

U�t;�1	 �
e�i���t	 sin��t	2 ei�’����t	� cos��t	2

�e�i�’����t	� cos��t	2 e�i���t	 sin��t	2

 !
;

(2)

tan��t	 � �
2��t	
	�t	

; 0 � ��t	<�; (3)

combined with the dynamical phases

���t	 �
1

2

Z t

�1
ds�	�s	 �

���������������������������������
	2�s	 � 4�2�s	

q
�: (4)

We emphasize that the phases of the eigenvectors have
been chosen as usual to satisfy the parallel transport:
h �j@=@tj �i � 0, leading to a zero geometric phase if
one considers a nonclosed trajectory in the parameter
space. We can thus generate by adiabatic passage the
coherent superposition j�i when � � �=2, i.e., for

��t	 � j	�t	j (5)

and for a controllable phase ’. Starting from either state
j1i or j2i [with initially ���1	 � � here], we can gen-
erate by adiabatic passage the coherent superposition j�i
or j�i (i.e., with � going from � to �=2) by choosing the
phase as’ � 0 or’ � �. Since j�i are eigenstates of the
Hamiltonian (1), if � is suddenly switched off, the tun-
neling will start from the well-defined localized state
previously prepared. Next, if � is suddenly switched
on, again the tunneling will stop in the state j i �
a�j�i � a�j�i in which it is at the switching time. In
particular, the tunneling can be stopped in one well if we
choose a switching time when a� � 1 (or a� � 1).

We implement this strategy in a tunneling system
driven by two off-resonant pulse-shaped fields, of fre-
quencies ! and its second harmonic 2! (Fig. 1), of
amplitudes E1�t	 and E2�t	, respectively, and of relative
phase �, leading to the total field E�t	 � E1�t	 cos!t�
E2�t	 cos�2!t��	. The effective Hamiltonian can be
written in the three-photon resonant approximation as

Heff�t	 � �h
0 j�jE2�t	E1�t	2ei’

j�jE2�t	E1�t	
2e�i’ �� S�t	

� �
(6)
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with

’ � �� arg��	; arg��	 � 0 or �; (7)

where the energy difference between the states j2i and j1i
is denoted by � and the relative Stark shift S�t	 (which is
of second order in the field amplitudes) [14]. The off
diagonal term j�jE2�t	E1�t	2ei’, of third order in field
amplitude, is a three-photon coupling between the states
j1i and j2i. The construction ofHeff�t	 requires in practice
additional states in the model, which are taken into
account by standard techniques of partitioning (or adia-
batic elimination) [14,15]. This allows one to determine
the coefficient � and the relative Stark shift S�t	, which
can both be chosen as real without loss of generality (see
below for a concrete model). The Stark shifts will depend
on the position of these additional states and on their
couplings with j1i and j2i. For instance, a single addi-
tional state j3i of energy E3 coupled with the state j2iwith
the coupling element �23, by the field of frequency !,
with a positive detuning: �h	23 :� E3 � E2 � �h! > 0,
will repel down the state j2i (of �j�23E1j

2=4	23). Identi-
fying (1) and (6) leads to 	�t	 � �� S�t	 and ��t	ei’ �
j�jE2�t	E1�t	2ei’. The condition (5) is well satisfied for
the particular field amplitudes such that

	 � �� S � 0 (8)

or for strong fields such that j�jE2E
2
1 � j�� Sj. This

latter condition is not considered in this work since in
practice it requires generally very strong fields that would
produce destructive processes, such as ionization. The
condition (8) is expected to occur for specific values of
field amplitudes if the frequency ! is appropriately
chosen such that the Stark shift satisfies S�t	< 0.

We illustrate the proposed mechanism to manipulate
coherently the tunneling in the standard symmetric
double-well model potential Ĥ0 � p2=2� x2=2� x4=
�64D	 (with D � 2 to approximately model the NH3 tun-
neling), expressed here in dimensionless units. Choosing
the polarization of the lasers in the x direction, we obtain
for the driven Hamiltonian Ĥ�t	� Ĥ0�xE�t	. The 2� 1
field shows a bias for� � �=2 that allows the breaking of
symmetry. Without loss of generality, we can choose a
-2
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basis such that j�i and j�i represent the localization in
the left and right wells, respectively: j�i � jLi, j�i �
jRi. We choose the appropriate frequency !�1:71�
1014 Hz which is a one-photon near resonance between
states j2i and j3i, and a two-photon near resonance be-
tween states j1i and j6i (see Fig. 1). The coefficient � and
the Stark shift S�t	 can be estimated by partitioning,
using the one-photon near resonances for simplifica-
tion, under the condition �max 
 	nr, where 	nr char-
acterizes the minimum detuning associated to the one-
photon near resonances and �max is the peak Rabi fre-
quency. We obtain here that � is proportional to
�16�23�36 and � < 0; i.e., arg��	 � �. The dynamics
can be considered as adiabatic inside the subspace
spanned by fj1i; j2ig if 	nrT � 1, where T stands for a
characteristic duration of the pulse [e.g., the full width
half maximum (FWHM) for a Gaussian pulse]. The adia-
batic dynamics can be characterized by the quasienergy
representation (associated to the Floquet Hamiltonian
with the double-well driven potential) (see, e.g., [15] for
a review of adiabatic dynamics for Floquet Hamiltonians)
as a function of the two field amplitudes for a given
frequency ! (see Fig. 2). One can see a (dark) region of
avoided crossing for moderate field amplitudes, which
corresponds approximately to the amplitudes for which
the condition (8) is satisfied. This avoided crossing can be
intuitively understood as follows: The Stark shifts, which
are the elements of lowest order in the field amplitudes,
push the two Floquet eigenenergies, connected to the bare
states j1i and j2i, closer to each other. They subsequently
repel since they are coupled (by the three-photon reso-
nance) approximately when the effective 	 becomes zero.
A choice of the envelope and peak fields correspond to a
specific path in Fig. 2. An additional condition on the
speed of the dynamics, which is determined by numerical
simulation, has also to be fulfilled to reach adiabatically
this avoided crossing.
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FIG. 2 (color online). Contour plot of the difference of the
quasienergies connected to the bare states j2i and j1i. The
darker region is the considered line of avoided crossings. The
white straight line corresponds to the dynamics used to achieve
localization.
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To achieve localization, we use nanosecond super-
Gaussian ramps of shape ��t	 � exp���t=#	8� (here of
FWHM 55.8 ns), which include a quasiplateau [see
Fig. 4(b), left frame; note that the width of the rising of
this super-Gaussian pulse is approximately 15 ns, which
gives here for the adiabatic factor �T � 565), and of peak
intensities 51 and 740 GW=cm2 for I1 and I2, respectively.
They allow (i) the use of the effective Hamiltonian (6)
and (ii) adiabatic passage until the avoided crossing. The
choice of the relative phase � allows one to choose the
well of localization.

As shown in Fig. 3, we obtain the localization of the
wave packet from the initial state j2i in the right (left)
well for � � 0 (� � �). The localization is quite robust
with respect to the relative phase �: We have observed
numerically that the localization probability decreases
from 1 to 0.97 when the relative phase is taken as 2.83
instead of �. Figure 4(a) (left frame) shows the localiza-
tion for a population initially prepared in state j1i. The
population is localized in the left (right) well for � � 0
(� � �). Depending on the initial state, we create the
target localized state by choosing the relative phase of the
two pulses.

To control the subsequent starting and suppression of
the tunneling oscillations, we use suddenly switched
pulses since the localized states are eigenstates of the
Floquet Hamiltonian (see Fig. 4). In practice this is ob-
FIG. 3. (a) Numerical simulation of the localization of the
populations as a function of time, respectively P1 (P2) of the
states j1i (j2i) in the full (dotted) line with j2i as initial
condition. The � lines represent the population PL localized
on the left for the phases � � 0 and � � �. (b) Floquet
eigenvalues &1; &2, respectively, connected to the bare energies
E1 and E2, as functions of the intensity of the pulse 2 for a fixed
value of the intensity of the pulse 1: I1 � 0:51� 1011 W=cm2.
The inset shows an enlargement of the avoided crossing of the
Floquet eigenvalues.
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FIG. 4. (a) Left frame: same as Fig. 3(a), but with j1i as the initial condition. Middle and right frames: time continuation of the
left frame. The plus (minus) line represents the population localized on the left (right) with the choice � � 0. (b) Intensities (in
1011 W=cm2) of the pulses as a function of time. The middle (right) frame shows the tunneling starting (suppression) induced by
fields suddenly switched off (on).
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tained with Gaussian ramps of short FWHM Ts such
that �Ts 
 1 and 	nrTs � 1 to avoid the appearance
of other resonances. The population is initially pre-
pared in the left well by adiabatic passage (see the left
frame of Fig. 4). Tunneling (of period 176 ps) starts
when the fields are suddenly switched off (Ts � 2 ps is
used, which gives here �Ts � 0:08 and 	nrTs � 6). After
three and a half periods, the pulses suddenly switched on
(with the same intensities used to localize) induce the
suppression of the tunneling and the localization in the
right well. This result is in agreement with the CDT by
two fields of different frequencies predicted in the con-
text of classical mechanics and with numerical quan-
tum simulations of a localized initial Gaussian wave
packet [12]. Since we have localized the wave packet,
we have access to the subsequent times of localization,
and we can thus start and suppress the tunneling at
controlled times. Reversing time in Fig. 3 and in the
left frame of Fig. 4 shows that the wave packet can be
alternatively redelocalized by adiabatic passage in state
j1i or j2i if the fields are switched off adiabatically
when the wave packet is in state j�i or j�i. The choice
of the final state is made by the appropriate choice of the
phase � � 0 or � � �, depending on the state before
switching off.

This process of localization by adiabatic passage does
not depend on the absolute phase of the total field, nor on
the ramp area.

In conclusion, we have shown that it is possible to
achieve the localization and suppression of tunneling by
adiabatic passage. This controlled switching process can
be adapted to the molecular alignment versus orientation.
In this context, alignment is obtained by the Stark shifts
induced by the two fields and oriented molecules corre-
spond to localized states [16]. The tunneling, which is an
oscillation between the two possible orientations, can be
obtained by switching off one of the two fields, the other
one maintaining the alignment. This scheme of controlled
223602
tunneling, reinterpreted as controlled manipulation of
superposition of states, can have applications in the con-
text of quantum computing.
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