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We introduce a new non-Hermitian random-matrix model for QCD with a baryon chemical
potential. This model is a direct chiral extension of a previously studied model that interpolates
between the Wigner-Dyson and Ginibre ensembles. We present exact results for all eigenvalue corre-
lations for any number of quark flavors using the orthogonal polynomial method. We also find that the
parameters of the model can be scaled to remove the effects of the chemical potential from all
thermodynamic quantities until the finite density phase transition is reached. This makes the model and
its extensions well suited for studying the phase diagram of QCD.
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Random-matrix models have long been used as effec-
tive models for a variety of complex quantum systems.
More recently the class of non-Hermitian random-matrix
models has received much attention in systems including
the fractional quantum hall effect [1], two-dimensional
charged plasmas [2], and quantum chaotic scattering (see
[3] for a review). Additionally, one was introduced by
Stephanov as a model for QCD with a baryon chemical
potential [4]. Since then this model and related extensions
have often been used to study the phase diagram of finite
density QCD [5]. It is also useful for evaluating numerical
algorithms that might be used to simulate finite density
QCD [6] and in studying the density of the eigenvalues of
the Dirac operator [7]. Despite the success of this model,
exact results for the eigenvalue correlations have re-
mained notably absent. Only recently has the quenched
eigenvalue density been obtained in the low energy (mi-
croscopic) limit by Splittorff and Verbaarschot [8].

Another model for the eigenvalues of the QCD Dirac
operator with a chemical potential was proposed by
Akemann [9]. This model was constructed as a chiral
extension of a previously studied non-Hermitian matrix
model. The main attraction of this model is that it can be
solved exactly for all the eigenvalue correlations.
However, the model is defined only in terms of the eigen-
values, and not from a matrix model based on the sym-
metries of the Dirac operator with a chemical potential. It
was later shown that the partition function for this model
agreed with that of Stephanov’s in the microscopic limit
[10]. This agreement, however, only holds for a suffi-
ciently small chemical potential as can be seen clearly
by comparing the microscopic spectral density [8].

Here we will consider a new matrix model for QCD
with a baryon chemical potential that is also based on the
form of the Dirac operator like in Stephanov’s model, but
can be solved for all spectral correlations like the model
of Akemann. We will give exact results for the correla-
tions with any number of quark flavors. We will also
consider the results in the microscopic limit where the
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correlations should agree with QCD due to universality.
Lastly we look at the partition function and show that one
can absorb the effects of the chemical potential by scaling
the parameters of the model. This then provides a physi-
cally accurate model that shows no change in thermody-
namic quantities until the finite density phase transition is
reached.

The matrix model originally studied by Stephanov is

D I �
0 iA��

iAy �� 0

� �
; (1)

with A a random complex matrix and � is multiplied by
the identity. This is based on the form of the Dirac
operator 6D���0 in a chiral basis. Here the matrix
elements of �0 are chosen to be constant, which retains
the correct symmetries of the Dirac operator, but makes
the model difficult to solve for the eigenvalues.

In this Letter we consider an alternate basis where the
matrix elements of �0 are not taken as constant but are
modeled with random matrices as

D II �
0 iA��B

iAy ��By 0

� �
: (2)

Here A and B are complex �N � �� � N matrices with �
the topological charge. The QCD partition function with
Nf quark flavors can now be modeled as

Z � N
Z

dAdBwG�A�wG�B�
YNf

j�1

det�DII �mj�; (3)

where N is a normalization constant we will choose
later. At low energies the results are universal for � � 0
and do not depend on the choice of the distribution for the
matrix elements. We also expect universality to hold at
� � 0 and therefore make the simple choice of a Gaussian
measure given by

wG�A� � exp���NTrAyA�: (4)

At � � 0 the parameter
����
�

p
� 
V=2N is determined by
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the absolute value of the chiral condensate in the chiral
limit (
) and the space-time volume (V).We will consider
the � dependence of � later. For now we will treat it as a
constant and calculate the distribution of eigenvalues.

In order to diagonalize the Dirac matrix we first make
the substitutions C � iA��B and D � iAy ��By. The
partition function becomes

Z � N 0
Z

dCdDw2�C;D�
YNf

j�1

det
mj C
D mj

� �
(5)

with N 0 a �-dependent constant, and the weight is

w2�C;D� � exp
�
�

�N�1��2�

4�2 Tr�CyC�DyD�

�
�N�1��2�

4�2 Tr�CD� CyDy�

�
: (6)

The matrix DII has exactly � zero eigenvalues and N
pairs of eigenvalues that we write as �izk. The nonzero
eigenvalues of CD and DC are then equal to �z2k. We now
introduce the parameterization

C � U�X� R�V; D � Vy�Y � S�Uy; (7)

where U and V are unitary square matrices, X and R are
complex �N � �� � N, and Y and S complex N � �N � ��
matrices. The elements Xij and Yij are zero except when
i � j, and Rij and Sij are zero except when i < j. The
above decomposition is not unique and we must restrict
the integration measure on U to the group U�N � ��=
�U�1�N 
U���� and on V to U�N�=U�1�N . The Jacobian
for this transformation can be calculated

j
�z2�j2
Y
k

jxkj
2�; (8)

where 
�z2� �
Q

i<j�z
2
i � z2j � is the Vandermonde deter-

minant. Here we have used that xkyk � �z2k with xk and yk
the diagonal elements of X and Y, respectively. With this
parameterization the integrals over U, V, R, and S be-
come trivial and we are left with integrals over the
complex numbers xk and yk. We can change the integral
over yk to an integral over the eigenvalues zk and then
integrate out xk to arrive at the form

Z � N 00
YNf

j�1

m�
j

Z
j
�z2�j2

YN
k�1

w�zk�dzk
YNf

j�1

�z2k �m2
j �;

(9)

with N 00 another normalization constant and

w�z� � jzj2��2 exp
�
�N�1��2�

4�2 �z2 � z�2�
�

� K�

�
�N�1��2�

2�2 jzj2
�
; (10)

where K� is a modified Bessel function.
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The eigenvalue representation of the partition function
(9) can be related to the model considered previously by
Akemann. For large argument, the Bessel function be-
comes K��x� �

������������
"=2x

p
exp��x�, which gives

w�z� �

��������������������������
"�2

�N�1��2�

s
jzj2��1 � exp

�
�

�N�1��2�

2�2

�
jzj2

�
#
2
�z2 � z�2�

��
; (11)

where we have set # � �1��2�=�1��2�. This is the
same model considered in [9]. The two models agree
when

�N�1��2�jzminj
2 � 2�2: (12)

The smallest eigenvalue zmin has an average size around
"=�
V� at � � 0. It is then convenient to consider the
above condition in the microscopic [11] and weak non-
Hermiticity [12] limits given by taking N ! 1 while
holding $k � 
Vzk, �2

s � 2N�2, and � fixed. The above
condition then becomes

j$minj
2 � 4�2

s : (13)

In the microscopic limit the two models agree only for
sufficiently small �s. Since the new model is based di-
rectly on the Dirac operator we expect that (10) is the
correct eigenvalue weight for QCD at low energies even
for larger values of �s.

Quenched spectrum.—Given the expression for the
partition function in terms of the eigenvalues of the
Dirac operator, we can now solve for their correlations.
This was done in [9] for the model with weight (11) at
Nf � 0 using the method of orthogonal polynomials ex-
tended to the complex plane. There it was shown that the
corresponding orthogonal polynomials are the Laguerre
polynomials. From that, all spectral correlations can be
determined analytically. It turns out that the orthogonal
polynomials corresponding to the weight (10) are also
Laguerre. We can therefore proceed in a similar fashion.

One can easily verify that the monic polynomials

p0
k�z� �

�
�2 � 1

�N

�
k
k!L�

k

�
�Nz2

1��2

�
(14)

are orthogonal with respect to the integralZ
Re�z�>0

p0
k�z�p

0
‘�z

��w�z�dz � h0k,k‘ (15)

with

h0k �
"�2�1��2�2k��k!�k� ��!

2��N�2k���2
: (16)

Here we restricted the range of integration to the positive
real half of the complex plane. This avoids double count-
ing pairs of eigenvalues with opposite signs and ensures
agreement with previously obtained results at � � 0.
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The n point spectral correlator can be written as

.0
N�z1; . . . ; zn� � det

1�i;j�n
�K0

N�zi; zj�� (17)

in terms of the kernel

K 0
N�x; y� �

�������������������
w�x�w�y�

q XN�1

k�0

1

h0k
p0
k�x�p

0
k�y

��: (18)

We can also evaluate the result in the microscopic limit.
The microscopic limit of the n point correlator is

.0
s�$1; . . . ; $n� � lim

N!1

1

�
V�2n
.N

�
$1


V
; . . . ;

$n


V

�
; (19)

with � kept fixed. This limit can be taken following the
procedure in [9]. The result can be written as a determi-
nant similar to (17) but with the microscopic kernel

K0
s�x; y� �

jxyj��1

4"�2
s�xy

���

���������������������������������������
K�

�
jxj2

4�2
s

�
K�

�
jyj2

4�2
s

�s

� e
Re�x2�y2�

8�2
s

Z 1

0
e�2�2

s tJ��x
��
t

p
�J��y

�
��
t

p
�dt: (20)

The spectral density is obtained by setting x � y in the
above expression and agrees with the result given in [8]
based on the model using (1). This agreement supports our
expectation that the results are universal since both mod-
els are based only on the symmetries of the Dirac opera-
tor. The universality of the microscopic eigenvalue
density has also been supported recently by direct com-
parisons with lattice QCD data [13].

Unquenched spectrum.— We can also extend the results
to an arbitrary number of flavors using an iterative pro-
cedure similar to the one used for the case of � � 0 in
[14]. However, since the mass term is only a function of z
and not z�, we cannot use a single set of orthogonal
polynomials. Instead, we construct a set of biorthogonal
polynomials for a flavors that satisfy the biorthogonality
condition

Z
Re�z�>0

pa
k�z�q

a
l �z

��w�z�
Ya
j�1

�z2 �m2
j �dz � hak,kl: (21)

The monic polynomials can be defined iteratively by

pa
k�z� �

pa�1
k�1�z�p

a�1
k �ima� � pa�1

k �z�pa�1
k�1�ima�

pa�1
k �ima��z

2 �m2
a�

qak�z
�� �

ha�1
k

pa�1
k �ima�

Xk
n�0

pa�1
n �ima�

ha�1
n

qa�1
n �z��

(22)

with the convention that q0n�z�� � p0
n�z��. The normaliza-

tion coefficient can also be derived recursively by

hak � �
pa�1
k�1�ima�

pa�1
k �ima�

ha�1
k : (23)

An explicit formula for the polynomials for a general
weight function appears in [15].
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For convenience, we will define the function

4a
k�z� � pa

k�z�
Ya
j�1

�z2 �m2
j �: (24)

The a flavor kernel can now be written as

K a
N�x; y� �

~Ka
N�x; y�

�������������������
w�x�w�y�

q Ya
j�1

�����������������
y2 �m2

j

x2 �m2
j

vuut ; (25)

with

~K a
N�x; y� �

XN�1

k�0

1

hak
4a

k�x�q
a
k�y

��: (26)

We can get a recursion relation for this by substituting
(22)–(24) into (26) and rearranging the sums as

~K a
N�x; y� �

~Ka�1
N �x; y� �

4a�1
N �x�

4a�1
N �ima�

~Ka�1
N �ima; y�:

(27)

Repeated application of these relations gives an expres-
sion for the a flavor kernel in terms of the zero flavor
kernel and the functions p0

N�k�x� for 0 � k � a� 1.
Notice that the modified kernel ~Ka

N�x; y� vanishes at x �

imj for 1 � j � a. It can therefore be written in the form
of a determinant

~K a
N�x;y��

��������������������

~K0
N�x;y� p0

N�x� ��� p0
N�a�1�x�

~K0
N�im1;y� p0

N�im1� ��� p0
N�a�1�im1�

..

. ..
. . .

. ..
.

~K0
N�ima;y� p0

N�ima� ��� p0
N�a�1�ima�

��������������������
jp0

N�‘�1�imk�j1�k;‘�a
:

(28)

The denominator was determined by requiring that the
coefficient of ~K0

N�x; y� is unity.
We can also take the microscopic limit of the above

kernel. For this we also scale the masses with the inverse
of the volume keeping m̂k � 
Vmk fixed. This limit must
be taken carefully and can be done with a procedure
similar to that in [16]. The result is

K a
s �x; y� � K0

s�x; y�
~Ka

s �x; y�
~K0

s�x; y�

Ya
j�1

�����������������
y2 � m̂2

j

x2 � m̂2
j

vuut ; (29)

with ~Ka
s �x; y� equal to�����������������������

~K0
s�x; y� J��x� � � � xa�1J��a�1�x�

~K0
s�im̂1; y� J��im̂1� � � � �im̂1�

a�1J��a�1�im̂1�

..

. ..
. . .

. ..
.

~K0
s�im̂a;y� J��im̂a� � � � �im̂a�

a�1J��a�1�im̂a�

�����������������������
j�im̂k�

‘�1J��‘�1�im̂k�j1�k;‘�a

:

(30)
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The function ~K0
s�x; y� is defined as the integral that

appears in (20). This gives the general result for the
microscopic spectral correlations of the QCD Dirac op-
erator with a baryon chemical potential.

Partition function.—This model can also be used as an
effective model for studying qualitative properties of the
finite density QCD phase diagram. We can construct this
model so that it has the correct physical behavior below
the finite density phase transition. To see this we will look
at the partition function, which is simply given by

Z
Nf

N � N 00N!
YNf

j�1

m�
j

YN�1

k�0

h
Nf

k : (31)

Using the recursion relations (23) and (22), the partition
function can be written in terms of the quenched poly-
nomials (14). The result is

Z
Nf

N � N
Nf

N

YNf

j�1

m�
j

det1�k;‘�Nf
�p0

N�‘�1�imk��


�m2�
: (32)

This result can also be obtained from the more general
expression given in [17]. We point out that the partition
function is real even though the unquenched eigenvalue
‘‘density’’ obtained from (25) at x � y may not be.

Notice that the polynomials p0
k only depend on �

through the combination �=�1��2�. If we had started
with a �-dependent � � �1��2��0 and an appropriate
normalization N then we could have made a partition
function that does not depend on �. This means that all
thermodynamic quantities would remain at their � � 0
values for �< 1. This agrees with the phenomenological
expectation that at zero temperature, the baryon number
density should remain at zero until a first order phase
transition is reached. In this respect, the new model is
an improvement over the previous one (1) since that one
shows an unphysical behavior in the baryon density as the
chemical potential is increased beyond the weak non-
Hermiticity limit. Another matrix model with improved
thermodynamic properties was studied in [18]; however,
that model has not been solved for the eigenvalues.

At � � 1, the above scaling is no longer valid since the
Gaussian integrals in the partition function would not
converge. However, one can show that for �> 1 and
�> 0 the chiral condensate in the unquenched theory
vanishes in the large N limit. The model therefore does
have a first order phase transition at � � 1. It can there-
fore be used as a simplified phenomenological model for
QCD at �<�c (here �c � 1).

Given this model’s success it would be interesting to
include temperature into the model and study the full
phase diagram as has done with previous matrix models
[5]. A more complete analysis of the phase diagram will
be saved for a later publication. Another interesting ex-
tension would be to make both A and B be random banded
matrices with a power law decay like what was considered
for � � 0 in [19]. This was found to provide good agree-
222001
ment with an instanton liquid model for eigenvalue cor-
relations at larger energies (beyond the Thouless energy).
This also may provide an accurate way to study the finite
temperature chiral restoration transition.

In conclusion, we have introduced a new random-
matrix model for QCD with a baryon chemical potential
that is based on the form of the Dirac operator in a chiral
basis and is exactly solvable for all eigenvalue correla-
tions. We have presented the correlations for any number
of quark flavors and given results in the microscopic limit
where they should agree with QCD due to universality.
This new model also has a physically accurate thermody-
namic behavior for �<�c and could provide a basis for a
phenomenological model of the finite density QCD phase
diagram.
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Verbaarschot for helpful discussions. This work was sup-
ported in part by NSF Grant No. PHY 01-39929.
-4
[1] P. Di Francesco et al., Int. J. Mod. Phys. A 9, 4257
(1994).

[2] P. J. Forrester and B. Jancovici, Int. J. Mod. Phys. A 11,
941 (1997).

[3] Y.V. Fyodorov and H.-J. Sommers, J. Phys. A 36, 3303
(2003).

[4] M. A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996).
[5] M. A. Halasz, A. D. Jackson, and J. J. M. Verbaarschot,

Phys. Lett. B 395, 293 (1997); Phys. Rev. D 56, 5140
(1997); M.A. Halasz et al., Phys. Rev. D 58, 096007
(1998); B. Vanderheyden and A. D. Jackson, Phys. Rev. D
62, 094010 (2000); B. Klein, D. Toublan, and J. J. M.
Verbaarschot, Phys. Rev. D 68, 014009 (2003).

[6] M. A. Halasz, Nucl. Phys. A642, 324 (1998); M. A.
Halasz et al., Phys. Rev. D 61, 076005 (2000);
J. Ambjorn et al., J. High Energy Phys. 10 (2002) 062.

[7] M. A. Halasz, J. C. Osborn, and J. J. M. Verbaarschot,
Phys. Rev. D 56, 7059 (1997).

[8] K. Splittorff and J. J. M. Verbaarschot, Nucl. Phys. B683,
467 (2004).

[9] G. Akemann, Phys. Rev. Lett. 89, 072002 (2002); J. Phys.
A 36, 3363 (2003).

[10] G. Akemann, Acta Phys. Polon. B 34, 4653 (2003).
[11] E.V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A560,

306 (1993).
[12] Y.V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommers,

Phys. Lett. A 226, 46, (1997).
[13] G. Akemann and T. Wettig, Phys. Rev. Lett. 92, 102002

(2004).
[14] P. H. Damgaard and S. M. Nishigaki, Nucl. Phys. B518,

495 (1998).
[15] M. C. Bergere, hep-th/0311227.
[16] T. Wilke, T. Guhr, and T. Wettig, Phys. Rev. D 57, 6486

(1998).
[17] G. Akemann and G. Vernizzi, Nucl. Phys. B660, 532

(2003).
[18] M. A. Halasz, hep-lat/0011086.
[19] A. M. Garcia-Garcia and J. C. Osborn, Phys. Rev. Lett. 93,

132002 (2004).


