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Quantification and Scaling of Multipartite Entanglement in ContinuousVariable Systems
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We present a theoretical method to determine the multipartite entanglement between different
partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems.
For such states, we determine the exact expression of the logarithmic negativity and show that it
coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate
the scaling of the multipartite entanglement with the number of modes and its reliable experimental
estimate by direct measurements of the global and local purities.
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The full understanding of the structure of multipartite
quantum entanglement is a major scope in quantum in-
formation theory that is yet to be achieved. At the ex-
perimental level, it would be crucial to devise effective
strategies to conveniently distribute the entanglement
between different parties, depending on the needs of the
addressed information protocol. Concerning the theory,
the conditions of separability for generic bipartitions of
Gaussian states of continuous variable (CV) systems have
been derived and analyzed [1–3]. However, the quanti-
fication and scaling of entanglement for arbitrary states
of multipartite systems remains in general a formidable
task [4]. In this work, we present a theoretical scheme
to exactly determine the multipartite entanglement of
generic Gaussian symmetric states (pure or mixed) of
CV systems.

We consider a CV system consisting of N canonical
bosonic modes, associated with an infinite-dimensional
Hilbert space and described by the vector X̂ of the field
quadrature operators. Quantum states of paramount im-
portance in CVsystems are the so-called Gaussian states,
i.e., states fully characterized by first and second mo-
ments of the canonical operators. When addressing
physical properties invariant under local unitary trans-
formations, one can neglect first moments and com-
pletely characterize Gaussian states by the 2N � 2N
real covariance matrix (CM) �, whose entries are �ij �

1=2hfX̂i; X̂jgi � hX̂iihX̂ji. The CM � must fulfill the un-
certainty relation �� i� 	 0, with the symplectic form
� � 
n

i�1! and ! � 
ij�1 � 
ij�1; i; j � 1; 2: Sym-
plectic operations (i.e., belonging to the group Sp�2N;R� �

fS 2 SL�2N;R�:ST�S � �g) acting by congruence on
CMs in phase space amount to unitary operations on
density matrices in Hilbert space. In phase space, any
N-mode Gaussian state can be written as � � ST�S, with
� � diagfn1; n1; . . . nN; nNg. The set � � fnig constitutes
the symplectic spectrum of � and its elements must fulfill
the conditions ni 	 1, ensuring positivity of the density
matrix % associated to �. The symplectic eigenvalues ni
can be computed as the eigenvalues of the matrix ji��j.
They are determined by N symplectic invariants associ-
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ated to the characteristic polynomial of such a matrix;
two global invariants which will be useful are the deter-
minant Det� �

Q
in

2
i and the quantity � �

P
in

2
i , which

is the sum of the determinants of all the 2� 2 subma-
trices of � related to each mode.

The degree of mixedness of a quantum state % is
characterized by its purity � � Tr%2. For a Gaussian
state with CM � one has simply � � 1=

�����������
Det�

p
. As for

the entanglement, we recall that positivity of the partially
transposed state ~%, obtained by transposing the reduced
state of only one of the subsystems, is a necessary and
sufficient condition [positive partial transpose (PPT) cri-
terion] of separability for �N � 1�-mode Gaussian states
of 1� N-mode bipartitions [5,6]. In phase space, partial
transposition amounts to a mirror reflection of one quad-
rature associated to the single-mode partition. If f~nig is
the symplectic spectrum of the partially transposed CM
~�, then a �N � 1�-mode Gaussian state with CM � is
separable if and only if ~ni	1 8 i. A proper measure of
CV entanglement is the logarithmic negativity EN [7],
which is readily computed in terms of the symplectic
spectrum ~ni of ~� as EN � �

P
i:~ni<1 ln~ni. Such a measure

quantifies the extent to which the PPT condition ~ni 	 1 is
violated.

Let us first consider the 2N � 2N CM ��N of a fully
symmetric N-mode Gaussian state (i.e,. a state invariant
under the exchange of any two modes)

� �N �

0BBBBBB@
� " � � � "

" � " ..
.

..

.
" . .

.
"

" � � � " �

1CCCCCCA; (1)

where � and " are 2� 2 submatrices. Because of the
symmetry of such a state, � and " can be put by means
of local (single-mode) symplectic operations in the form
� � diagfb; bg;" � diagfe1; e2g. The symplectic spec-
trum ��N of ��N has then the structure (see the
Appendix)
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��N � f��; . . . ; ��|�������{z�������}
N�1

; ���N� g; (2)

�2
� � �b� e1��b� e2�;

�2
��N� � �b� �N � 1�e1��b� �N � 1�e2�:

The �N � 1�-degenerate eigenvalue �� is independent of
N, while ���N� can be expressed as a function of the purity
�� � �Det���1=2 of the single-mode reduced state and of
the symplectic spectrum of the two-mode block ��2 ,
��2 � f��; �� � ���2� g

�2
��N� � �

N�N � 2�

�2
�

�
�N � 1�

2
�N�2

� � �N � 2��2
��:

(3)

The global purity of the fully symmetric state is

��N � �Det��N ��1=2 � ��N�1
� ���N� ��1; (4)

and, through Eq. (3), can be directly linked to the one-
and two-mode parameters. In particular, the symplectic
eigenvalues �� are determined in terms of the two Sp�4;R�

invariants ��2 and ��2 by the relation [8] 2�2
� �

��2 �
����������������������������
�2

�2 � 4=�2
�2

q
.

Next, we consider the �N � 1�-mode Gaussian states
constituted by generic single-mode states with CM � and
fully symmetric N-mode states with CM ��N of the form
(1). The mode with CM � is then coupled with all other N
modes by the same 2� 2 real matrix �. The CM � of
such �N � 1�-mode states reads

� �

�
� �
�T ��N

�
;� � �� . . .�|��{z��}

N

�: (5)

We will now show that the properties of mixedness and
entanglement of these states are determined by a suitable,
limited set of global and local invariants under symplec-
tic (unitary) operations. Let us introduce the purity �� �

�Det���1=2 of the single-mode party, the global purity
�� � �Det���1=2 of the state (5), and the global
Sp�2N�2;R� invariant �� � ��� ���N �

P
in

2
i , where

the nis constitute the symplectic spectrum � �
fn1; . . . ; nN�1g of the CM �, and

��� � Det�� 2NDet�; (6)

��N � N�Det�� �N � 1�Det"�: (7)

We are now in the position to characterize and quantify
the bipartite entanglement between the single-mode �
and the N-mode block ��N , the multipartite entanglement
between all the N � 1 modes, and to provide an opera-
tional scheme for their experimental determination in
terms of measurements of the global and local purities.
To proceed, we must evaluate the logarithmic negativity
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by determining the partially transposed CM ~�, with
respect to the partition �j�N, which is obtained by flip-
ping the sign of Det�. Mixedness and entanglement are
encoded, respectively, in the symplectic spectrum of �,
and of ~�. It is worth noting that, of the previously
introduced parameters, only ��� is affected by the op-

eration of partial transposition ��� ���!�!~�~���, with

~� �� � Det�� 2NDet� � ���� � 2=�2
�: (8)

The symplectic spectrum � � fnig (i � 1; . . . ; N � 1) of
the CM � Eq. (5) is of the form (see Appendix)

� � f��; . . . ; ��|�������{z�������}
N�1

; n�; n�g; (9)

where �� is the lowest symplectic eigenvalue of the
reduced two-mode state ��2 . The eigenvalues n� can be
evaluated observing that Eqs. (4), (7), and (9) impose the
identity �� � ��� � �N � 1��2

� � ��N�1
� ��N ��2 which

can be used to obtain

2n2� � ��� � ��N�1
� ��N ��2

�

������������������������������������������������������������������������������
���� � ��N�1

� ��N ��2�2 �
4

��N�1
� ���

2

s
: (10)

Since partial transposition leaves the N-mode symmetric
block ��N unchanged, the symplectic eigenvalues of ~�

are again of the form ~� � f~nig � f��; . . . ; ��; ~n�; ~n�g,
with ~n� defined as in Eq. (10), but with ��� replaced by
~��� from Eq. (8). The logarithmic negativity E�j�N

N ,
quantifying the bipartite entanglement between � and
��N , is determined only by those symplectic eigenvalues
of ~� which satisfy ~ni < 1. Since �� 	 1 (because it
belongs to the symplectic spectrum of �), the entangle-
ment is determined only by the eigenvalues ~n�. On the
other hand, the eigenvalues n� of Eq. (10) can be inter-
preted as the symplectic spectrum of an equivalent two-
mode state of CM �eq with global purity �eq and invari-
ant �eq given by

�eq � �N�1
� ��; �eq � ��� � ��N�1

� ��N ��2: (11)

The corresponding ~�eq associated to the partially trans-
posed CM ~�eq reads then ~�eq � ��eq � 2=�2

� �

2=��N�1
� ��N �2. By comparison with the expression ~� �

��� 2=�2
1 � 2=�2

2, holding for a generic two-mode
state with local purities �1 and �2 [8], one determines
the local purities of the equivalent two-mode state �eq:

�eq
1 � ��; �eq

2 � �N�1
� ��N : (12)

The two global invariants [Eq. (11)] and the two local
invariants [Eq. (12)] determine uniquely the entangle-
ment of the two-mode Gaussian state with CM �eq. In
particular, one can immediately see that the symplectic
eigenvalues of the partially transposed CM ~�eq coincide
with ~n�, so that we obtain the crucial result that the
-2
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FIG. 1 (color online). Entanglement hierarchy for �N�
1�-mode GHZ-type states (N � 9).
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logarithmic negativity of the equivalent two-mode state

coincides with the logarithmic negativity E�j�N

N of the
�N � 1�-mode state. Explicitly, one has

E�j�N

N � maxf0;� log~n�g; (13)

with 2~n2� � ~�eq �
�������������������������������
~�2eq � 4=�2eq

q
. Indeed, only the

smallest symplectic eigenvalue ~n� enters in the determi-
nation of the multimode entanglement, since ~n� > 1 for
two-mode states [8].

The 1� N entanglement is completely quantified by
measuring the two local purities �� and ��N , the global
purity ��, the symplectic eigenvalue ��, and Det�
(which together with �� determines ���). For two-
mode Gaussian states, a reliable quantitative estimate of
the logarithmic negativity, yielding exact (and very nar-
row) lower and upper bounds on the entanglement, can be
obtained by simply measuring the global and local puri-
ties of the state [8]. In the present instance, this fact
implies that a reliable estimate of the 1� N entanglement
does not require the knowledge of the correlation matrix
�, while the remaining four quantities (the three purities
and the eigenvalue ��) can be measured even without
homodyning by direct single-photon detections [9].
Moreover, knowledge of these few quantities is also suf-
ficient to determine the multimode, multipartite entan-
glement of the state �. In fact, the fully symmetric
N-mode block ��N can be again regarded as a state
describing a mode with CM � coupled with a fully
symmetric �N � 1�-mode block ��N�1 , and thus the 1�
�N � 1� entanglement within ��N can again be computed
by constructing the corresponding equivalent two-mode
state and evaluating its entanglement. This scaling pro-
cedure can be iterated to determine all the multimode
entanglements existing between each mode and each fully
symmetric K-mode sub-block ��K (K � 1; . . . ; N). The
1� K entanglement between the single-mode � and any
fully symmetric K-mode partition ��K of ��N can be
determined in a similar way. A crucial feature of this
scaling structure of the multipartite entanglement is that,
at every step of the cascade, the 1� K entanglement is
always equivalent to a 1� 1 entanglement, so that the
quantum correlations between the different partitions of
� can be directly compared to each other; it is thus
possible to establish a multimode entanglement hierarchy
without any problem of ordering.

To illustrate the scaling structure of multipartite en-
tanglement in CV systems let us consider a pure, �N �
1�-mode fully symmetric Gaussian state of the form of
Eq. (1). Imposing the constraint of pure state (� � 1 ,

�� � ���N�1� � 1), one obtains ei � f1� b2�N� 1��

N���1�i
�����������������������������������������������������������������
�b2 � 1��b2�N� 1�2 ��N� 1�2

p
�g=2bN. Such

a state belongs to the class of CV Greenberger-Horne-
Zeilinger (GHZ)-type states discussed in Ref. [3]. These
multipartite entangled states are the outputs of a sequence
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of N beam splitters with N � 1 single-mode squeezed
inputs [3,10]. In the limit of infinite squeezing, these
states reduce to the proper GHZ states of CV systems
[3]. The CM �GHZ

�N�1 of this class of pure states, for a given
number of modes, depends only on the parameter b �

1=�� 	 1, which is an increasing function of the single-
mode squeezing. Correlations between the modes are
induced according to the above expression for the cova-
riances ei. Exploiting our previous analysis, we can com-
pute the entanglement between a single-mode with
reduced CM � and any K-mode partition of the remain-
ing modes (1 � K � N), by determining the equivalent
two-mode CM �eq

�j�K . The 1� K entanglement quantified

by the logarithmic negativity E�j�K

N is determined by the
smallest symplectic eigenvalue ~n�K;N�

� of the partially
transposed CM ~�eq

�j�K . For any nonzero squeezing (i.e.,
b > 1) one has that ~n�K;N�

� < 1, meaning that the state ex-
hibits genuine multipartite entanglement; each mode is
entangled with any other K-mode block, as first remarked
in Ref. [3]. Further, the genuine multipartite nature of the
entanglement can be precisely quantified by observing
that E�j�K

N 	E�j�K�1

N , as shown in Fig. 1. The 1� 1 en-
tanglement between two modes is weaker than the 1� 2
one between a mode and other two modes, which is in
turn weaker than the 1� K one, and so on with increas-
ing K in this typical cascade structure. From an opera-
tional point of view, the signature of genuine multipartite
entanglement is revealed by the fact that performing, e.g.,
a local measurement on a single-mode will affect all the
other N modes. This means that the quantum correlations
contained in the state with CM �GHZ

�N�1 can be fully recov-
ered only when considering the 1� N partition. In par-
ticular, the pure-state 1� N logarithmic negativity is, as
expected, independent of N, being a simple monotonic
function of the entropy of entanglement EV (defined as the
von Neumann entropy of the reduced single-mode state
with CM �). It is worth noting that, in the limit of infinite
squeezing (b ! 1), only the 1� N entanglement di-
verges while all the other 1� K quantum correlations
remain finite (see Fig. 1). Namely, E�j�K

N ��GHZ
�N�1� !

b!1
�

�1=2� logf1� 4K=�N�K � 1� � K�K � 3��g, which can-
4-3
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FIG. 2. Scaling as a function of N of the 1� 1 and of the
1� �N � 1� entanglement for a �N � 1�-mode GHZ-type CV
pure-state (b � 1:5).
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not exceed log
���
5

p
’ 0:8 for any N and for any K <N. At

fixed squeezing, the scaling with N of the 1� �N � 1�
entanglement compared to the 1� 1 entanglement is
shown in Fig. 2 (we recall that the 1� N entanglement
is independent on N). Notice how, with increasing num-
ber of modes, the multipartite entanglement increases to
the detriment of the two-mode one which becomes dis-
tributed between all the modes. We remark that this scal-
ing occurs in any Gaussian states, either fully or partially
symmetric, pure or mixed. For instance, this is the case
for a single-mode squeezed state coupled with a N-mode
symmetric thermal squeezed state. The simplest example
of a mixed state with genuine multipartite entanglement
is obtained from �GHZ

�N�1 by tracing out some of the modes.
Figure 2 can then also be seen as a demonstration of the
scaling in such a N-mode mixed state, where the 1�
�N � 1� entanglement is the strongest one. Thus, with
increasing N, the global mixedness can limit but not
destroy the genuine multipartite entanglement between
all the modes. This entanglement is experimentally ac-
cessible by all-optical means [3], and it also allows for a
reliable (i.e., with fidelity F > 1=2) quantum teleporta-
tion between any two parties [10]. Therefore, the quanti-
fication of multipartite entanglement by measurements of
purity, which, as we have already remarked, can be
experimentally implemented even without homodyning,
leads to an accurate estimate of the multiparty teleporta-
tion efficiency and to direct control on the transfer of
quantum information.

In conclusion, we have shown that multipartite quan-
tum correlations of Gaussian states of 1� N bipartitions
under symmetry are endowed with a scaling structure
that reduces the problem to the analysis of the entangle-
ment of equivalent two-mode Gaussian states. Thanks to
this reduction, it is possible to determine exactly the
logarithmic negativity of the multimode states and to
allow for a reliable experimental estimate of the multi-
partite entanglement by direct measurements of global
and local purities, without the need for the full recon-
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truction of the covariance matrix. Our results apply to
many cases of practical interest. For instance, the entire
class of bi-symmetric—i.e., invariant under the ex-
change of two given modes—three-mode Gaussian states
[2] has its multipartite entanglement completely quanti-
fied by the present analysis. The generalization of the
present approach for the quantification of multipartite
CV entanglement to states with weaker symmetry con-
straints and to M� N-mode bipartitions (with M> 1)
awaits further study.

Financial support from INFM, INFN, and MIUR is
acknowledged.

Appendix: Proof of the symplectic degeneracy.—We
prove here the multiplicity of the symplectic eigenvalue
�� for the CMs ��N and �, asserted in Eqs. (2) and (9) .
We first recall that, if � � f�1; . . . ; �Ng is the symplectic
spectrum of the CM �, then the 2N eigenvalues of the
matrix i�� are given by the set f��ig. Let us focus next
on the CM ��2 : in the linear space on which the matrix
i���2 acts, the eigenvector v� corresponding to the ei-
genvalue �� reads v����ib�e1

��
;�1;ib�e1

��
;1�T. Because

of the symmetry of ��N , any 2N-dimensional vector v of
the form

v � �0; . . . 0;�i
b� e1
��

;�1|����������{z����������}
mode i

; 0 . . . 0; i
b� e1
��

; 1|������{z������}
mode j

; 0; . . . 0�T

(1a)

(i.e., any vector obtained by taking v� in a couple of
modes ij and appending to it 0 elements for all the other
modes) is an eigenvector of i���N with eigenvalue ��. It
can be seen immediately that one can construct N � 1
linear independent vectors of the above form, proving
Eq. (2). Clearly, an analogous reasoning holds for the
matrix �, proving Eq. (9).
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