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We show how to perform universal quantum computation with atoms confined in optical lattices
which works both in the presence of defects and without individual addressing. The method is based on
using the defects in the lattice, wherever they are, both to “mark” different copies on which ensemble
quantum computation is carried out and to define pointer atoms which perform the quantum gates. We
also show how to overcome the problem of scalability in this system.
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Neutral atoms confined in (quasi)periodic optical po-
tentials and manipulated by lasers provide us with one of
the most promising avenues to implement a quantum
computer or to perform quantum simulations [1]. For
example, a Bose-Einstein condensate can be loaded in
an optical lattice achieving almost unit occupation per
lattice site through a superfluid-Mott insulator quantum
phase transition [2]. A universal set of quantum gates can
then be implemented by individual laser manipulation
and inducing cold collisions between the atoms [3]. In
several remarkable experiments, all these phenomena
have been observed [4-6].

At the moment, quantum computation with atoms in
optical lattices is hindered by three major obstacles:
(1) Lack of addressability; (2) Presence of defects (empty
site); (3) Uncontrolled number of atoms. The first obstacle
is due to the fact that the separation between atoms is of
the order of an optical wavelength (determined by the
laser which creates the confining potential), so that indi-
vidual addressing with another laser beam would require
focusing beyond the diffraction limit. A possible way to
circumvent this problem consists of using optical super-
lattices [7], or other optical microtraps [8], where the
separation between atoms is larger. To implement quan-
tum gates in these setups, however, may be harder than in
conventional lattices. The second obstacle occurs due to
the fact that some sites may have no atom at all. A single
defect will unavoidably spoil any quantum computation,
and may also have important consequences in quantum
simulations. In current experiments, one can estimate that
the number of defects is relatively high [9]. The last
obstacle can be overcome to a very large extent by a
filtering process [10], where lattice sites with more than
one atom are emptied until a single atom remains there.
Alternatively, one can define collective qubits indepen-
dent of the number of atoms per site [11]. Both procedures
should avoid situations in which defects are present.
Finally, the number of atoms forming the quantum com-
puter must be well defined since, otherwise, when per-
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forming quantum gates the rest of the atoms will act as an
environment.

In this Letter we introduce a novel method of perform-
ing quantum computations in optical lattices (or, more
generally, periodic potentials) which circumvents the
above mentioned obstacles. One of the fundamental ideas
of our method is to use defects (which are delocalized in
the lattice) in order to mark the atoms that build the
quantum computer and to break the translational sym-
metry in order to obtain addressability. Note that we do
not know where the defects are, but only their presence
(wherever they are) is sufficient for our purposes. On the
other hand, the defects allow us to build “pointer” sites,
also delocalized, which will be used to perform a univer-
sal set of quantum gates. Note also that since there will be
several defects in the atomic sample, we will have several
quantum computers running in parallel, randomly dis-
tributed all over the optical lattice. This situation re-
sembles ensemble quantum computation of Ref. [12],
and in fact some of the ideas developed there can be
directly incorporated in our method to make it more
efficient. In general, these methods suffer from the scal-
ability problem. Here, we will also present a method to
overcome it and to make the present proposal scalable.
Note that even though our method is developed for atoms
in optical lattices, some of these ideas may also apply to
very different implementations where similar obstacles
are present.

We consider a three dimensional periodic potential in
which atoms are loaded. The atoms have three internal
states, |a), |b) and |p). The first two will store the qubit,
whereas the third one will be used by the pointer. We will
consider each 1D lattice independently, ie., we assume
that tunnelling is switched off for all times along the y
and z directions. Thus, we can effectively reduce the
system to a set of 1D periodic lattices. We will use second
quantization description of the states; that is, for each
lattice site k we will write a state |my, mj}, n;);, where
my, mj, and n; are natural numbers that indicate the
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occupation number of levels |a), |b), and | p), respectively.
Thus, a typical product state of one 1D lattice will be

®lmy, ml, ni. (1)

We will assume that four kinds of basic operations are
available. These operations act in exactly the same way in
each lattice site, since we do not assume individual ad-
dressing. On the other hand, they are based on physical
processes which have been demonstrated (or are feasible)
in the current experimental setups:

(1) Particle transfer between internal states. We will
consider two kinds: (i.1) An integer number of particles
is transferred between states a and p. For example,

Unt® = |m,0,n) < |m + x,0,n — x), 2)

where x is an integer. Note that for the unitary opera-
tor describing this process at each site, the relation

mn" Y =Um . holds. Another example that we
will use later is W: |1,0, 1) < |0, 1, 1). These operations
can be carried out using blockade mechanisms due to
atom-atom interactions [10]. (i.2) Transfer of particles
that generate superpositions. For example, V =
exp(—iH,,m/8), which acts only on the a and b levels,
with H,, = ath + bTa, where @ and b are the annihila-
tion operators for particles in states |a) and |b), respec-
tively. These operations can be easily realized using laser
or rf fields [6].

(i1) Collisional shifts: They are due to interactions
between particles in the states a and p. For example,
the unitary operation C(¢): |1,0, 1) < ¢/¢|1,0, 1) can be
obtained by waiting the appropriate time [3].

(iii) Lattice shifts: We denote by S, the operations
which shift the pointer states x steps to the right. For
example, S_; transforms the state in Eq. (1) to
®lmy, ml, nyi1);. They can be realized by changing the
intensity and polarization of the lasers [3,13].

(iv) Emptying sites: All atoms in internal states a or p
are thrown away. This can be done, for example, by
switching off the lattice potential for the corresponding
internal state. We will denote them by E,, or E,, and they
transform the state in Eq. (1) into ®;|m,, m}, 0);, and
®,|my, 0, ny )y, respectively.

Initially, all atoms are in the internal state |a), distrib-
uted along the lattice according to some probability dis-
tribution; i.e., the state is a mixture of states in the form of
Eq. (1) with m; = n; = 0. Thus, the goal is to show how
with these random states, and without requiring individ-
ual addressing, we can perform arbitrary quantum com-
putations. This will be achieved in two steps. First there
will be a preparation step, and then a computation step. At
the end we will show how to include an additional step to
make the system scalable. In the preparation stage of our
protocol, only states a and p will be occupied. Thus, we
will simplify our notation denoting |m, n): = |m, 0, n).
Moreover, the states that we will use now will be product

states of the form
lmy, ny) ® lmy, ny) ... ® |my, ny), 3)

where we have not included the subscript k to simplify the
notation. This step starts by reducing all occupation
numbers larger than 2 to 2 (Fig. 1). This is done by
applying the operation Uﬁ:g_z first and then E,, and
then repeating those actions for x > 2 (up to some value
of x in which we are confident that no site with this
number of particles is present).

The next step is to “format” the lattice. We produce
several areas, randomly distributed across the lattice,
with exactly n neighboring sites having a single atom in
a and one site at the right edge with two atoms, one in p
and the other in a (see Fig. 1). In order to accomplish this,
we have to keep only the areas in which initially there are
n neighboring two-atom sites and a one-atom site at the
edge. The rest of the atoms are thrown away, and then we
manipulate the remaining atoms to obtain the desired
states. The sites in which initially there was a single
atom that has survived will now contain the pointers
(the extra atom in level p). This atom will then be used
to perform the quantum gates.

First, we change the internal states of the one-atom
sites from a to p. These atoms are now called the pointers.
They will be essential to create the quantum computers in
the lattice. Each of those atoms marks the position where
we try to establish one of those quantum computers. We
want such a pointer to survive during the following
protocol if it has on its left at least n sites with exactly
two atoms in each. We thus proceed as follows. We shift
the pointer one lattice site to the left. We transfer the
pointer atom to the state a if there are two atoms in that
site by applying U;:(l). By emptying the internal states p
we delete all pointers which fail to have a two-atom site
next to their starting position. Then we raise the pointer
again by Ug:(l). By repeating this procedure for the next
n — 1 sites we delete all pointers that fail to have n two-
atom sites on the left of their starting position. Note that
this also implies that every pointer in one of the n sites on
the right of each surviving pointer is deleted. This means
that every pointer can act on its own “reserved” n sites,
i.e., there are no overlapping reserved areas. Having the

FIG. 1. First, the sites with more than two atoms are depopu-
lated. The format step (n = 3) produces sites with two atoms in
levels a and p, surrounded by a ‘“‘reserved area” to their left
which contains exactly n sites with a single atom.
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pointer and the reserved n two-atom sites, we can effec-
tively address single sites of this reserved space. This
enables us to reduce the number of atoms in each site in
this reserved area to one and afterwards to empty the
remaining sites that are not reserved by any pointer. In
terms of the operations described above, the protocol is
given by a sequence of the following operators: (1) U(]):(l);
2) S_4, U%?, E,, U%?, and then repeat this whole step
n—1 times; 3) Uy7; (4) Sy, U3y, E,, Uyg, and then
repeat this whole step n — 2 times; (5) S, U%,E,,, Ué:(l).
The randomly distributed quantum computers consist
of n sites, all of them with a single atom in state |a), and
the pointer atom in state |p) in the rightmost site (see
Fig. 1). The first atoms store a qubit each, with states
[l)=11,0,0) and |1) =10, 1,0), whereas the pointer
atom in state |0, O, 1) carries out the quantum gates.
Now we show how to carry out a universal set of
quantum gates using the operations defined above. The
idea is to move the pointer atom to the sites which
participate in the quantum gate and then apply the ap-
propriate operations. The set is composed of [14]
(a) control-7r phase-gate on two arbitrary qubits, at the
conventional locations “first site”” and “‘second site””: we
move the pointer to the first site, and apply the operator
U(l),’%. This turns the pointer to the level a, if the qubit
atom is in level a. After this operation, the pointer can be
found in any superposition of levels p and a. In the next
step we move the pointer to the second site and we wait
until the collisional shift operation C(r) is applied. Here,
“moving the pointer” means displacing the lattice asso-
ciated with the pointer level p. Finally, we move the
pointer back to the first site and apply again U?)’%. It is
simple to show that this will only add a 7= phase if both
qubits are in the state | 1); (b) Phase gate ¢ on an arbitrary
qubit (see Fig. 2): We bring the pointer to the correspond-
ing site and wait for the appropriate collisional shift
operation C(¢); (c) Hadamard gate on an arbitrary qubit:
We first bring the pointer to the site. Then we apply the

WWARARANAANAIRAIAY
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FIG. 2. The levels a, b will store the qubits, and the p level
will contain the pointer, which can be moved around allowing
us to address single sites, e.g., applying a phase gate ¢ on an
arbitrary qubit.

following sequence of operations: C(7/2), V, C(mr), VT,
C(m/2).

Measurement on an arbitrary qubit in the {|]), |1)} basis
can be performed as follows. We promote the correspond-
ing atom to the pointer level provided it is in state |a), i.e.,
if the qubit is in the state ||) . For the measurement, we
count the numbers of atoms in the pointer level (by
analyzing the fluorescence coming from that level) and
drop them afterwards. Note that this occurs in the same
way as in usual ensemble quantum computation [14],
where we get the global information about all quantum
computers. To save the original pointer from being emp-
tied we need an extra resting site, with one atom in the
ground state (for example, the rightmost qubit can be
reserved for this purpose). In summary, we (1) move
the pointer to the corresponding site and apply U?:f;
(2) move the pointer to the resting site and apply U%(l)
and U%;; (3) count atoms in pointer level and apply E,;
(4) apply Ui‘(l). The measured qubit site is emptied, if the
qubit was found in state ||), while the pointer and the
resting qubit survived unchanged. We can continue by
moving the pointer back to the target qubit, applying W
and then repeating the above protocol. The number of
atoms counted in the pointer level is equal to the number
of qubits measured in state | ). Alternatively, we can
leave out this step and relate the number of qubits found
in ||) to the total number of quantum computers in the
lattice. This number can be estimated either by the sta-
tistic of the initial distribution or by counting the pointers
or atoms at the end of the computation.

So far we have shown how to build a quantum register
of n qubits, for an arbitrary integer n, and how to perform
quantum computations. Note that in order to prepare the
initial state it is necessary that lattice areas with no
defects exist, i.e., neither empty sites nor one-atom sites.
If the number of such defects inside the lattice is larger
than the number of 1D lattices, then the probability of
ending up with at least one quantum computer will de-
crease exponentially with »n, and thus the method pro-
posed here will not be scalable. In detail, if we assume
that every site of the lattice is filled independently with
zero, one, or two atoms, according to the probabilities
distribution pg, p;, p,, then the expected number of quan-
tum computer of length n in a 1D lattice can be estimated
by Npp5 = Np;(1 — py — p1)", where the length N of
the lattice has to be much larger than n. This quantity
decreases exponentially with n which makes the pro-
posed method not scalable.

In the following we show how to boost the probability
of creating a quantum computer in the lattice by correct-
ing the defects, i.e., making p, and p, arbitrarily small.
Having this possibility, we change the probabilities to
po = 0 and p; = 1/n. The resulting expected number of
quantum computers in a lattice of size N is then given by
N/n(1 — 1/n)", which goes to N/(ne) ~ 1/n for large n;
i.e., our method becomes scalable. The procedure of cor-
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FIG. 3. Overpopulated sites are used to first fill empty sites
and then to put two atoms in sites with one atom.

recting the defects will also be useful if one performs
quantum simulations with large spin chains.

The main idea of the protocol is to first fill all sites
which are empty with one atom coming from a different
site which is overpopulated. Then, the sites with one atom
are filled with another atom also coming from overpopu-
lated sites (see Fig. 3). Thus, we have to assume that there
are as many overpopulated sites as defects, an achievable
requirement for sufficiently high densities.

First, we reduce all occupation numbers larger than 4
to 4 [15]. The protocol starts by promoting two atoms to
the state p whenever a site has four atoms. Then, we shift
the lattice corresponding to level p by a random amount x
and try to deposit one of such atoms in an empty site. The
remaining atom in the p level is thrown away. Note that
for every corrected defect we lose one atom in this pro-
tocol. Losing atoms while correcting defects is unavoid-
able, since it is the only way to reduce the entropy of the
state in our setup. We proceed in the same way until we
make the probability of having sites with no atoms van-
ishingly small. In more detail, we apply the following
sequence of operations several times: Ui’(z), S U(l):é, S_ .
Ui‘g, E, to fill the empty sites. Now, we can do the same
but replacing Uif(% and U(l):é by Uj;gz‘z and U%i, so that sites
with a single atom get double occupation. For a finite
lattice of length N there are only N different possibilities
for the x, so the protocol requires at most N repetitions.

We still need some defects to act as pointers. So we
either do not fill up all the one-atom defects or we have to
create new defects. The latter can be done by first reducing
all occupation numbers to two and then applying a uni-
tary operation that changes |2, 0, 0) to the superposition
state /|1, 1,0) + /1 — ]2, 0, 0), followed by E,. With
probability & a one-atom-site defect is created out of a
two-atom site.

We have shown that it is possible to perform quantum
computations in optical lattices in the presence of lattice
defects, and without the necessity to address single sites
or specify the total number of atoms in the lattice. In
practice, a very high degree of control is required, some-
thing which is being achieved in current experiments.
The ideas presented here not only apply to the field of
quantum computation but they can also be used to prepare
and manipulate the states in the lattice, and to build some

prescribed atomic patterns [10]. Furthermore, all these
methods can be generalized in a straightforward way to
two-dimensional or three-dimensional lattices. Finally,
note that some of the protocols given here require a large
number of steps, something which is experimentally de-
manding. We are currently using the ideas of quantum
compression in order to develop new efficient methods for
loading the lattices [16].
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