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Emergence of Bloch Bands in a Rotating Bose-Einstein Condensate
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A rotating Bose-Einstein condensate is shown to exhibit a Bloch band structure even in the absence
of a periodic potential. Vortices enter the condensate via Bragg reflection if the frequency of a rotating
drive is adiabatically increased or decreased, or if the interaction is adiabatically changed at a constant
rotating drive. A localized state analogous to a gap soliton in a periodic system is predicted to occur
near the edge of the Brillouin zone.
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The Bloch band is crucial to our understanding of
periodic systems, such as electronic states in solids [1],
atom dynamics in optical lattices [2], and Cooper-pair
tunneling in small Josephson junctions [3]. The under-
lying physics common to all of these is the Bragg reflec-
tion that occurs at the edges of the Brillouin zone. The
resultant Bloch band gives rise to various interesting
phenomena, such as Bloch oscillations [1] (wherein a
particle in a periodic potential driven by a weak constant
force cannot be accelerated indefinitely but oscillates in
real space) and the formation of gap solitons [4] (local-
ized wave packets arising from the balance between
negative-mass dispersion and repulsive interaction).
Both of these phenomena have recently been observed
in a Bose-Einstein condensate (BEC) in an optical lattice
[5,6].

In this Letter, we show that yet another system, a BEC
confined in a rotating harmonic-plus-quartic potential,
exhibits a Bloch band structure, and we investigate the
associated novel phenomena. Seemingly this system has
no periodic structure but may be considered to be a quasi-
1D periodic system in the following sense. When the
rotating frequency of the potential is high, the quartic
potential, / r4, together with the centrifugal potential,
/ �r2, produces a Mexican-hat-shaped potential [7]
whose minima form a quasi-1D toroidal geometry.
Under such circumstances any perturbation V��� that is
needed to drive the system into rotation by breaking the
axisymmetry serves as a ‘‘periodic’’ potential since
V��� � V��� 2��, where � denotes the azimuthal angle.

In the present system, we show that by controlling the
frequency of the rotating drive or the strength of the
interaction, we can manipulate the condition of Bragg’’s
law, thereby nucleating or removing vortices adiabati-
cally. In contrast to a method that invokes dynamical
instabilities [8,9], we can create the vortex state without
heating the atomic cloud. Schemes that adiabatically nu-
cleate vortices have also been proposed in Refs. [10–14].
We also show that a localized state is generated even with
repulsive interactions, in a manner analogous to gap
soliton formation in periodic systems [4].
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We begin by discussing a BEC in a 1D ring to illustrate
the essence of the phenomena. We assume that a rotating
potential takes the form V��; t� � " cosn����t�, where
n is an integer. In a frame rotating at frequency �, the
potential V becomes time independent, and the Gross-
Pitaevskii (GP) equation is given by
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where energy and time are measured in units of
	h2=�2mR2� and 2mR2= 	h with m and R being the atomic
mass and the radius of the ring, and � characterizes the
strength of the interaction. The wave function is normal-
ized as
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2d� � 1.
First, let us consider the noninteracting case (� � 0).

By the gauge transformation � � e�i��=2 1D, Eq. (1)
takes the form of the Mathieu equation ��@2� �
" cosn��� � E�, where E � ��2=4 plays the role
of the total energy in our Bloch band picture. From the
Bloch theorem and the single valuedness of  1D, the solu-
tion is found to satisfy �����0� � ei�p��=2��0����,
with �0 � 2�=n being the period of the potential V
and the integer p is the winding number

R
2�
0 @�arg 1Dd�=

2� [15]. It follows that p��=2 may be regarded as the
quasimomentum, indicating that we can move in the
quasimomentum space by changing �. Figure 1 shows
E and the angular momentum hLi � �i
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as functions of � for the first and second Bloch bands.
The Bloch band structure in Fig. 1 indicates that if we
adiabatically increase or decrease � across � � 2, the
nonvortex state  1D ’ 1=

�������
2�

p
transforms to the doubly

quantized vortex state  1D ’ e2i�=
�������
2�

p
and vice versa.

The time scale of the adiabatic change must be much
longer than the inverse energy gap ’ "�1.

When j�j * ", the system exhibits hysteretic behavior
and a loop structure emerges in the Bloch bands [16]. We
see in Fig. 1 that the first and second bands form loops for
� � 1 and �1, respectively; hence the adiabatic nuclea-
tion of vortices is not possible with, respectively, increas-
ing and decreasing � because the nonlinear Landau-
Zener transition [16,17] occurs no matter how slow the
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FIG. 2 (color). (a) Angular momentum hLi versus rotation
frequency � of the stationary states of Eq. (2) with g � 0, K �
1, and " � 0:02. The images (1-1)–(1-5) and (2-1)–(2-5) cor-
respond to the branches indicated by the red and blue curves.
(b) Time evolutions with g � 0, K � 1, and an additional
dissipation parameter % � 0:03, where � is changed linearly
from 1.52 to 1.6 (red curve) and from 1.62 to 1.54 (blue curve)
during 0 � t � 600. The initial state is the nonvortex ground
state. The parameter " is linearly ramped up from 0 to 0.04
during 0 � t � 200, kept at 0.04 during 200 � t � 400, and
ramped down from 0.04 to 0 during 400 � t � 600 to suppress
nonadiabatic disturbances. The size of the images is 5� 5 in
units of � 	h=m!?�

1=2.

E

γ=0

〈L
〉

Ω

γ=0

(a)

(b)

γ=1

γ=−1

γ=1

Ω

γ=−1

FIG. 1 (color). (a) E � ��2=4 and (b) hLi � �i
R
 �
1D �

@� 1Dd� of the first (red curves) and the second (blue curves)
Bloch bands for the noninteracting (main panels) and interact-
ing (right panels) BECs in a 1D ring described by Eq. (1) with
V��� � 0:1 cos2�. Since V��� has the twofold symmetry, there
are two independent branches with even and odd values of hLi
[15], which are shown by the solid and dotted curves.
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change of �. It can be shown that the states on the loop
have dynamical instability [18] that breaks the symmetry
of the system j 1D���j � j 1D����0�j. This instability
is similar to the one that forms gap solitons in a BEC in
an optical lattice [19].

We now consider a BEC in a harmonic-plus-quartic
potential with a rotating stirrer. We assume a tight
pancake-shaped trap such that the axial trapping energy
	h!z is much larger than other characteristic energies and
that the system is effectively 2D. The external potential in
the corotating frame of reference takes the form V�r� �
r2=2� Kr4=4� "r2 cos2�, where K is a constant and the
third term "�x2 � y2� is a stirring potential, which can be
produced by laser beams propagating in the z direction.
Such an anharmonic potential was theoretically consid-
ered in Refs. [7,20,21] and has recently been realized
experimentally [22]. We normalize the length, time, en-
ergy, and wave function by d0 � � 	h=m!?�, !�1

? , 	h!?,
and

����
N

p
=d0, respectively, with !? and N being the fre-

quency of the radial harmonic trap and the number of
atoms. The wave function is then normalized asR
j 2Dj

2dr � 1. The time-dependent GP equation in the
frame corotating with the stirring potential at frequency
� is given by
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where g � �!z=�2�!?��
1=24�Na=d0 characterizes an ef-

fective strength of interaction in 2D [23] with a being the
s-wave scattering length.

When � � 1, the system described by Eq. (2) can be
approximated by a quasi-1D ring [7]. Assuming  2D ’
22040
f�r�ei‘�=
�������
2�

p
, we find that an effective potential for the

radial wave function is given by ‘2=�2r2� � r2=2�
Kr4=4. This potential has a minimum at r ’ �‘2=K�1=6

for ‘� 1 and the effective frequency around it is !eff ’���
6

p
�‘K�1=3. If!eff is much larger than other characteristic

frequencies, the dynamics of f�r� can be ignored. After
normalization of the time by #�2 �

R
rjfj2r�2dr, the

equation of motion for � reduces to Eq. (1), where � is
given by 2g#2

R
rjfj4dr. Thus, the system described by

Eq. (2) exhibits the quasi-1D circular flow for large
angular momentum [7], and we expect that a Bloch
band structure emerges. We show below that this is true
even for �� 1 and ‘� 1.

Figure 2(a) shows the angular momentum hLi � �i�R
 �
2D@� 2Ddr and the density and phase profiles (insets)

of the noninteracting stationary states of Eq. (2) [24]. We
find that the behavior of hLi is similar to that in Fig. 1(b).
When we start from the ground state with hLi � 0 (1-1),
two vortices enter at � ’ 1:57 (1-2), producing a doubly
quantized vortex (1-3) [20]. Increasing the rotation fre-
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FIG. 3 (color). (a) The g dependence of the first and second
bands (left and right panels) with K � 1 and " � 0:02, where
the ordinates are offset by �g for clarity. The dynamically
unstable regions are indicated by the red curves. The inset
shows a localized stationary state —a gap soliton—formed
near the first band at g�0:8 and ��1:55. (b) Time evolutions
with % � 0:03 and K � 1, where g is linearly ramped from
�1:2 to 0.5 with � � 1:58 [red curve, corresponding to the red
arrow in (a)], from 1.5 to �0:3 with � � 1:56 (blue curve, blue
arrow), and from 0 to 1 with � � 1:55 (green curve, green
arrow). The change in " for the red and blue curves is the same
as that in Fig. 2(b). For the green curve, " � 0:04 is maintained
during 200 � t � 600 and a small perturbation to break the
axisymmetry is added to the initial state.
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quency � further, we can nucleate two more vortices in
the condensate [(1-4) and (1-5)]. If we follow the branch
starting from hLi � 2 (2-1), the two vortices escape out of
the condensate with increasing � [(2-2) and (2-3)] and
then four vortices enter at � ’ 1:7 (2-4). As in the 1D
case [15], the changes of the vorticity are even numbers
because of the twofold symmetry of V�r�. It should be
noted that the Bloch band picture holds even for the
nonrotating gas, while the ring-shaped profile manifests
itself only if the gas is rotating [cf. (1-1) and (2-3)].

The frequencies at which the Bragg reflection occurs in
Fig. 2(a) are different from those in Fig. 1. The difference
arises from the dispersion relation of the vortex states in
2D, i.e., the relation between the energy and angular
momentum. In the 1D case, the energy is given by E1D

m �R
d�� 1D�

m ��@2�� i�@�� 1D
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between  1D
m and  1D

m�2 occurs when E1D
m � E1D

m�2, i.e.,
� � 2m� 2. In the 2D case, we employ a variational
wave function  2D

m ���jmj!��1=2d�jmj�1
m rjmj exp��r2=

�2d2m�� im�� to obtain E2D
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K�jmj � 1��jmj � 2�d4m=4 � �m � g�2jmj�!=�22jmj�2 �
�jmj!2d2m�, where the variational parameter dm is deter-
mined from @E2D

m =@dm � 0. When K � 1 and g � 0, the
condition for Bragg reflection to occur between  2D

m and
 2D
m�2 (E2D

m � E2D
m�2) for m � 0, 2, and 4 is satisfied at

� � 1:58, 1.83, and 2.03, respectively, which are in good
agreement with the numerical results in Fig. 2(a) (corre-
sponding to the points at which the red and blue curves
cross, with hLi changing by �2).

The energy gap can also be obtained by a variational
method. The matrix element of the stirring potential, for
example, between  2D

0 and  2D
2 is calculated to be

j
R
dr 2D�

2  2D
0 "r2 cos2�j ’ 0:46" for K � 1. The energy

gap at � ’ 1:57 is then given by ’ 0:92", which also
agrees very well with the numerical result ’ 0:91".

The Bloch band structure in Fig. 2(a) indicates that if
we prepare the nonvortex state at � & 1:55 and adiabati-
cally increase � to above � ’ 1:6, we obtain a doubly
quantized vortex state by following the red curve.
Interestingly, we can nucleate vortices also by decreasing
�, that is, by preparing a nonvortex state for 1:6 & � &

1:7 and decreasing � to below � ’ 1:55 by following the
second Bloch band (blue curve). Figure 2(b) illustrates
these adiabatic processes; here to take into account the
effect of dissipation on the adiabatic processes, we replace
i with i� % on the left-hand side of Eq. (2), where a
constant % is taken to be 0.03 [25]. We prepare the non-
vortex ground state with g � 0 and gradually ramp up �
from 1.52 to 1.6 [red curve in Fig. 2(b)], or ramp it down
from 1.62 to 1.54 (blue curve). As expected, two density
holes with phase singularities come from infinity and
unite to form a doubly quantized vortex. We note that
the behaviors in Fig. 2(b) are almost the same as for the
dissipation-free case (% � 0, data not shown), indicating
that the process is robust against dissipation. The energy
22040
gap between the first and second Bloch bands at � ’ 1:57
is ’ 0:036 for " � 0:04. According to the Landau-Zener
formula, the transition probability between the energy gap
is below 1% in the situation in Fig. 2(b), in agreement
with our numerical result.

In the case of g � 0, the interaction bends the Bloch
bands as shown in Fig. 3(a), yielding hysteresis as in the
1D case. We note that the region of � in which the Bragg
reflection occurs is shifted due to the interaction. The
shift is attributed to the difference in interaction energies
between the nonvortex and vortex states. To show this we
again employ the variational wave function  2D

m . We find
that the condition for the Bragg reflection to occur be-
tween  2D

0 and  2D
2 , i.e., E2D

0 � E2D
2 , is satisfied at � �

1:53 for g � 1:6 and � � 1:64 for g � �1:6, in qualita-
tive agreement with the shifts shown in Fig. 3(a). Since
the interaction term of E1D

m is independent of m, the shift
does not occur in 1D (see Fig. 1).
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The shift in the position of the Bragg reflection implies
the possibility of the adiabatic nucleation of vortices at
fixed � by changing the strength of the interaction using,
e.g., the Feshbach resonance [26]. For example, at � ’
1:58, the first Bloch band has angular momentum hLi ’ 0
for g & �1 [left panel in Fig. 3(a)], which continuously
increases to hLi ’ 2 with an increase in the interaction
from attractive to repulsive (red arrow). Similarly, there is
a region in which hLi changes from 0 to 2 as g decreases
from positive to negative [blue arrow in the right panel in
Fig. 3(a)]. No dynamical instability is present for the red
and blue arrows. Figure 3(b) illustrates these results,
where the initial state is the nonvortex ground state and
the strength of the interaction is gradually changed with
� held fixed (red and blue curves). We find that the two
vortices are nucleated in a manner similar to that in
Fig. 2(b). The repulsive-to-attractive case is particularly
interesting because the attractive interaction is usually
considered to hinder vortex nucleation [21].

The adiabatic theorem breaks down when the path
enters the region of dynamical instability. A notable
example is shown by the green arrow in Fig. 3(a), where
dynamical instability arises for g * 0:6 at � ’ 1:55. This
instability causes a twofold symmetric state [like the
inset (1-2) of Fig. 2(a)] to transform into a localized state
shown in the inset of Fig. 3(a); the localized state under-
goes a center-of-mass motion in order to preserve the
angular momentum [27]. This localization is due to the
interplay between repulsive interaction and negative-
mass dispersion around the edge of the Brillouin zone.
The localized state can therefore be regarded as an analog
of the gap soliton in a periodic system [4]. The green
curve in Fig. 3(b) demonstrates the time evolution corre-
sponding to the path shown by the green arrow in
Fig. 3(a). The twofold symmetry shown in the inset at t �
300 is broken in the course of vortex nucleation, giving
rise to two localized states, shown in the insets at t � 400
and t � 560.

In conclusion, we have shown that the Bloch band struc-
ture arises in a BEC confined in a harmonic-plus-quartic
potential with a rotating drive, which enables us to nu-
cleate vortices adiabatically. The physical mechanism of
vortex nucleation is very similar to Bragg reflection at the
edge of the Brillouin zone. Interestingly, we can nucleate
vortices not only by increasing the stirring frequency but
also by decreasing it, or by changing the strength of the
interaction at a fixed stirring frequency, which may be
called a ‘‘Feshbach-induced Bragg reflection.’’ The adia-
batic processes are shown to be robust against dissipation
due, e.g., to thermal processes. Spontaneous localization
of the rotating cloud is predicted, which indicates the
emergence of a gap soliton.
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