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Detecting Fuzzy Community Structures in Complex Networks with a Potts Model
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A fast community detection algorithm based on a g-state Potts model is presented. Communities
(groups of densely interconnected nodes that are only loosely connected to the rest of the network) are
found to coincide with the domains of equal spin value in the minima of a modified Potts spin glass
Hamiltonian. Comparing global and local minima of the Hamiltonian allows for the detection of
overlapping (“fuzzy’’) communities and quantifying the association of nodes with multiple commun-
ities as well as the robustness of a community. No prior knowledge of the number of communities has to

be assumed.
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Finding groups of alike elements in data is of great
interest in all quantitative sciences. For multivariate data,
where the objects are characterized by a vector of attrib-
utes, a number of efficient clustering algorithms exist [1].
They allow one to find clusters of similar objects based on
a metric between the attribute vectors. If, however, the
data are of relational form, e.g., a network G(N, M) con-
sisting of N nodes and M links connecting them and
representing some relation between the nodes, the prob-
lem of finding alike elements corresponds to discovering
communities: subsets of nodes interconnected more
densely among themselves than with the rest of the net-
work (for a recent review see Ref. [2]). This can be
formalized as

2m 2M m,y
nni=1 NN =1 nN—n)’ M

where m is the number of links between the n nodes of the
community and m,, is the number of links connecting
them to the remaining N — n nodes of the network. In
other words, a community’s inner link density should be
higher than the network’s average link density which
again should be higher than the community’s outer link
density. As a community structure we define an assign-
ment of all nodes of the network into communities that
fulfill (1). We see from (1) that the presence of commun-
ities is bound to the presence of inhomogeneities in the
link distribution of a graph. Furthermore, it is understood
that a community structure is not defined uniquely on a
network. Rather, a number of community structures dif-
ferent in size and number of communities may exist that
all fulfill the inequalities (1). Certain nodes may be
assigned to different communities in different realiza-
tions of community structures. The differences and sim-
ilarities of these realizations yield valuable information
about the robustness of a particular assignment.
Furthermore, the nodes which can be placed into more
than one community represent an overlap of possible
community structures that cannot be interpreted as a
hierarchy of communities, since the overlap may be
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only partial. Here, we introduce a new algorithm that
can rapidly detect a community structure and allows for a
quantitative assessment of the individual realizations.

In this Letter, we combine the early idea by Fu and
Anderson for graph bipartitioning with a modified Ising
Hamiltonian [3] and the recent Potts model clustering of
multivariate data by Blatt et al [4]. This allows us to map
the communities of a network onto the magnetic domains
in the ground state or in local minima of a suitable
Hamiltonian. For this purpose we alter a g-state Potts
Hamiltonian by adding a global constraint that forces the
spins into communities according to (1):

H=1 5, +ry 200 o
s=1

(i.))EE

Here, E is the set of edges, o;,i = 1,..., N denote the
individual spins which are allowed to take ¢ values
1,..., g, n, denotes the number of spins that have spin s
such that '?_, ng = N, J is the ferromagnetic interaction
strength, vy is a positive parameter, and 0 is the Kronecker
delta. The first sum is the standard ferromagnetic Potts
term for nodes connected by an edge in the network, and
is minimized by H ¢, = —JM. It favors a homogeneous
distribution of spins over the network. Diversity, on the
other hand, is introduced by the second term which sums
up all possible pairs of spins which have equal value. It
counterbalances the first sum and increases the energy
with increasing homogeneity of the spin configuration. It
represents a global antiferromagnetic interaction being
maximal when all nodes have the same spin, and minimal
when all possible spin values are evenly distributed over
all nodes.

The choice of y determines how strongly the minimum
of the combined Hamiltonian depends on the topology of
the network. Consider a network of two communities
gi(ny, m;) and g,(n,, m,) with m;, edges connecting
them. For the ground state to be composed of these two
communities, y* has to obey a simple condition

}[homogeneous = Hdiverse: (3)
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yr= g2 (4)
nin;

Comparing with (1) we see that, apart from the ferromag-
netic coupling J, y* is just the outer link density of com-
munity g;(n;, m;). Thus, with the parameter y we enforce
a ground state of the system such that all groups of nodes
with equal spin have an outer link density smaller than y.
Setting J =1 and 7y to be the average connection proba-
bility of the network p =& (or y* = p(J;;) for net-
works with weighted links), we thus satisfy the second
inequality in (1). The first inequality in (1) is satisfied im-
plicitly, because high inner link densities are energeti-
cally favored by the Hamiltonian. Different local minima
of the Hamiltonian then correspond to different possible
assignments of community structures. It is instructive to
write the Hamiltonian (2) in the form

H = 8.0)y =) (5)

i<j

with J;; as the (weighted) adjacency matrix of the graph.
The ground state structure of this spin glass Hamiltonian
corresponds to the community structure of the network.
Fortunately, finding the ground state is difficult only for
networks without a clear community structure, and where
the ambiguous community assignment corresponds to a
typical spin glass situation of multiple local energy min-
ima. Relevant examples of networks with nonrandom
community structure, however, usually correspond to
Hamiltonians with prominent ground states in large ba-
sins of attraction which makes our approach particularly
practicable.

The number of possible communities ¢ is not a critical
parameter in the algorithm: it needs to be chosen only
large enough to accommodate for all possible commun-
ities. If the number of communities is smaller than ¢, the
remaining spin states will not be populated. However,
since the run time of the algorithm is linear in ¢, a
reasonable value should be chosen (¢ < 100 was sufficient
in our case).

It remains to define a measure of the statistical signifi-
cance of the communities found. Given the number of
nodes in a community n, the number of inner links [;,,
and the number of outer links /,,, we can calculate the
expected number of possible equivalent communities
E(n, L, l,y) in an Erd8s-Rényi random network [5] of
the same size (N, M) and connection probability p =

oM.
NN-D®

N n(n—1) N —
E(n,lin,lom)=< )( 2 )(n( n)>p""
n i Lout

X (1 —_ p)[n(’lf1)/2]7loulploul(1 — p)n(Nf"l)*Zoul_
(6)

If E(n, L, loy) is larger than 1, we can expect to find such
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a community in a random network of the same size,
marking the border of statistical significance.

To practically find or approximate the ground state of
our system we employ a simple Monte Carlo single spin
flip heat-bath algorithm. In addition, we use simulated
annealing [6] with the following cooling schedule: We
start from a temperature where more than 0.95 X (N —
N/q) of the N nodes change their spin in every sweep
over the network. Then the system is subsequently cooled
down using a decrement function for the temperature of
the form T} = aT) with @ = 0.99 or similar values for
the kth step, until it reaches a configuration where no more
than a given number of spin flips are accepted during a
certain number of sweeps over the network. In one such
run, one reaches the ground state or another low lying
local minimum that corresponds to a community struc-
ture of the network. With a set of several runs, we are able
to evaluate the robustness of the community classification
by sampling the local minima of the energy landscape of
the Hamiltonian. The number of coappearances of nodes
in one community are then binned in an N X N matrix.
We then order the rows and columns of this matrix
according to the assignment of communities from a single
simulated annealing run. Well defined community struc-
tures then appear as blocks of high coappearance along
the diagonal. Off-diagonal instances of high coappear-
ance indicate a possible overlap between clusters.

Let us first check our algorithm by applying it to a
number of computer-generated random test networks with
known community structure as suggested in [7]. Nodes
are assigned to communities and are randomly connected
to members of the same community by an average of (k;,)
and to members of different communities by an average of
(koy) links. Fixing the average degree of all nodes to
(k) = (kin) + (kow) = 16, it becomes more and more dif-
ficult for any algorithm to detect the communities as
(koy) increases on the expense of (kj,). We count a pair
of nodes as positive (negative) when it is in the same (a
different) community by design. We benchmark sensitiv-
ity (specificity) as the fraction of all positive (negative)
pairs of nodes that are classified correctly by the algo-
rithm. Hence, sensitivity (specificity) is a measure of how
good an algorithm performs in grouping nodes together
(apart) that do (do not) belong together. We tested two sets
of networks. The first is composed of four equally sized
communities of 32 nodes each, and the second is com-
posed of four communities of 128, 96, 64, and 32 nodes,
respectively. Performance of our algorithm and, for com-
parison, the one by Girvan and Newman (GN) [8] is
shown in Fig. 1. Note the high sensitivity and specificity
of our algorithm for both types of networks. When run-
ning our algorithm without simulated annealing, but
simply relaxing the system at temperature zero from a
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FIG. 1. Benchmark of the algorithm for networks with

known community structure and comparison with Girvan
and Newman. Top row: four communities of 32 nodes each;
bottom row: four communities of 128, 96, 64, and 32 nodes,
respectively. Symbol size corresponds to error bars.

random initial condition it is extremely fast, yet still
performs as well as the GN method.

Figure 2 shows the dependence of the sensitivity of the
algorithm on ¢ in the case of the test network with
equally sized communities for four different values of
(kin). Note that results do not depend on g. For the same
type of test networks, Fig. 2 also shows the robustness of
the sensitivity with respect to the choice of y. The better
the communities are defined (the larger (k;,)), the more
robust are the results. The maxima of the curves for all
values of (k;,), however, coincide at y = p =~ 0.125 which
again justifies this choice of parameter. The same state-
ments apply to the specificity.

One real world example with known community struc-
ture is the college football network from Ref. [8]. It
represents the game schedule of the 2000 season of
Division I of the U.S. college football league. The nodes
in the network represent the 115 teams, while the links
represent 613 different games played in the course of the
year. The community structure of this network arises
from the grouping into conferences of 8—12 teams each.
On average, each team has seven matches with members
of its own conference and another four matches with
members of different conferences. We perform a parame-
ter variation in 7y at ten values from 0.1p = y = p. This
allows for the estimation of the robustness of the result
with respect to vy and the detection of possible hierarchies
in the community structures, as low values of y generally
lead to a less diverse community assignment. At each
value of y we relax the system 50 times from a randomly
assigned initial configuration at 7 = 0 using g = 50.
Figure 3 shows the resulting 115 X 115 coappearance
matrix, normalized and color coded. The ordering of
the matrix corresponds to the assignment of the teams
into conferences according to the game schedule as in-
dicated by the dashed blue lines. Apart from regaining
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almost exactly the known community structure, our al-
gorithm is also able to detect inhomogeneities in the
distribution of intraconference and interconference
games. For instance, we see a large overlap of the
Pacific Ten and Mountain West conferences and also a
possible subdivision of the Mid American conference into
two subconferences. This is due to the fact that geographi-
cally close teams are more likely to play against each
other as already pointed out in Ref. [8].

Finally, we consider a large real world example with
only partially known community structure, a large pro-
tein folding network compiled by Rao and Caflisch [9].
This network represents the conformation space of a 20
amino acids peptide sampled by molecular dynamics at
the melting temperature. The 5 X 103 subsequent confor-
mational snapshots were taken at time intervals of 20 ps,
resulting in 132 168 different configurations sampled and
228972 observed transitions between two different con-
formations. These represent a network of conformations,
where a link indicates that two conformations follow
each other in time. Configurations visited more than
once have a correspondingly higher statistical weight.
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FIG. 3 (color online). Coappearance matrix for the football
network (0.1p = y = p). Matrix ordering taken from assign-
ment of teams into conferences according to game schedule.
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FIG. 4 (color online). Coappearance matrix for the reduced
version of the protein folding network (0.1p = y = p). Matrix
ordering taken from a simulated annealing run of the full
network.

Analysis of this network yields valuable information
about the free energy landscape of the folding
Hamiltonian without the need for projecting it onto ar-
bitrarily chosen coordinates. Applying the algorithm to
the complete unweighted network using ¢ = 50 and y =
p yields a largest community of 16 000 nodes, correctly
corresponding to the folded state (FS). The statistical
weight of the nodes in this community was found to be
55% of the total weight which confirms the expectation of
the folded and denatured state being equally populated at
the melting temperature. The characteristic conforma-
tions of the denatured state, the high enthalpy, high
entropy conformations, such as the helical conformations
(HH), as well as low entropy conformations such as the
curl-like trap (TR) are also recognized as communities.
Again, 7y is varied between 0.1 p =y =p and T=0
with 50 repetitions at each value of y and ¢ = 50. For
this, we used the reduced version of the folding network
as in [9] that contains only the 1287 nodes with a statis-
tical weight of = 20 and the 23948 links connecting
them. Figure 4 shows the resulting 1287 X 1287 coap-
pearance matrix. The rows and columns are ordered with
respect to one single simulated annealing run at y = p.
Thus, we see how well the ground state is approximated
by the local minima and how robust the assignment into
communities is with respect to y. Again we find a clear
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characterization of the FS and TR communities. The HH,
however, do not occur in one community for all values of
v which indicates many different possible assignments
into communities and is an indication of their high en-
tropy nature. Furthermore, a number of putative transi-
tion states (pTS) could be assigned, which mediate the
folding from certain denatured configurations into the
folded state.

In conclusion, we discuss a new algorithm for com-
munity detection in complex networks based on a modi-
fied g-state Potts model. Communities appear as domains
of equal spin value near the ground state of the system,
which is approximated through Monte Carlo optimiza-
tion. Only local information is used to update the spins
which makes parallelization of the algorithm straightfor-
ward and allows the application to very large networks.
On both computer-generated and real world networks as
studied here the algorithm performs fast, often consid-
erably faster than current state-of-the-art algorithms.
Without using prior knowledge it automatically detects
the number of communities as the number of occupied
spin states. As the algorithm is nondeterministic and
nonhierarchical, it allows for the quantification of both,
the stability of the communities, as well as the affiliation
of a node to more than one community (‘“fuzzy
communities™).
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