Frozen Glass Phase in the Multi-index Matching Problem

O. C. Martin, M. Mézard, and O. Rivoire

Laboratoire de Physique Théorique et Modèles Statistiques, bâtiment 100, Université Paris-Sud, F-91405 Orsay, France (Received 12 July 2004; published 18 November 2004)

The multi-index matching is an NP-hard combinatorial optimization problem; for two indices it reduces to the well understood bipartite matching problem that belongs to the polynomial complexity class. We use the cavity method to solve the thermodynamics of the multi-index system with random costs. The phase diagram is much richer than for the case of the bipartite matching problem: it shows a finite temperature phase transition to a completely frozen glass phase, similar to what happens in the random energy model. We derive the critical temperature, the ground-state energy density, and properties of the energy landscape and compare the results to numerics based on exact analysis of small systems.

DOI: 10.1103/PhysRevLett.93.217205 PACS numbers: 75.10.Nr, 75.40.Mg

It has been recognized early on that one important motivation of the research in spin glass theory is the ubiquity of systems with frustration and disorder [1]. In particular, recent statistical physics studies have brought interesting new results in some important computer science problems. Notable examples are found in optimization [e.g., *K* satisfiability (*K*-SAT) [2], graph coloring [3], or vertex cover [4]] and information theory (e.g., error-correcting codes [5]). So far, the most interesting applications of spin glass theory have been obtained in this emerging field, which is witnessing an upsurge of interdisciplinary studies involving physicists, computer scientists, and probabilists.

One of the first optimization problems studied analytically by physics methods was the random bipartite matching problem (BMP). It is also a simple problem: from the computer science point of view, it belongs to the class P of polynomial complexity; from the physics point of view, it has no phase transition at finite temperature, and its solution with the replica method [6] shows a simple replica symmetric behavior. Interestingly, the validity of this solution has been recently confirmed by a rigorous mathematical analysis [7].

Here we study the multi-index matching problem (MIMP), a natural extension [8] of the BMP. This is a more complicated problem: it belongs to the NP-hard class, and as we will see, it exhibits a finite temperature phase transition, with a low temperature glassy phase. Using the cavity method, we find that this phase consists of isolated configurations, and we conjecture that our method yields an exact solution. Because of its structural resemblance to the BMP, one may hope that the MIMP will be amenable to rigorous study, generalizing the construction of [7] to a problem with a glass phase.

The random MIMP.—In the BMP one is given two sets of M points, S_1 and S_2 . Each point of S_1 must be "matched" or assigned to one point of S_2 . This matching must be one-to-one, and it can be represented by the "occupation" of the edges between the points of the

two sets; we define $n_{i_i,i_2}=1$ if the points $(i_1,i_2)\in S_1\times S_2$ are matched, while $n_{i_1,i_2}=0$ otherwise. To each matching we associate a cost or energy, which is the sum of the costs of each occupied edge.

The MIMP is a straightforward generalization of this problem to more than two indices. Given d sets S_1, \ldots, S_d , each of M sites, a hyperedge is a d-uplet where exactly one site from each set appears. For each hyperedge we introduce a cost ℓ_{i_1,\ldots,i_d} , and the total cost of a (multi-index) matching is given, in terms of the occupation numbers of hyperedges, by

$$H[\{n_{i_1,\dots,i_d}\}] = \sum_{i_1,\dots,i_d} \ell_{i_1,\dots,i_d} n_{i_1,\dots,i_d}.$$
 (1)

The occupation numbers of hyperedges, $n_{i_1,\dots,i_d} \in \{0,1\}$ must be such that each site appears exactly once:

$$\forall r \in \{1, \dots, d\}, \qquad \forall i_r, \sum_{i_1, \dots, i_{r-1}, i_{r+1}, \dots, i_d} n_{i_1, \dots, i_d} = 1.$$
(2)

The optimization problem consists in finding the minimum cost matching. What makes this problem difficult is the constraint (2) of having each site appear exactly in just one hyperedge; for $d \ge 3$ the MIMP is NP hard [9]. MIMP arise for instance when assigning tasks (jobs) to people in particular time slots or in different places. An application also arises in the context of track reconstruction [10]: given the positions of M unlabeled particles at d different times, one is to determine the tracks or trajectories of each. This kind of formulation is, in fact, used for track reconstruction in high energy physics [11].

We study the random MIMP where the individual costs $\ell_{i_1,\dots i_d}$ are independent identically distributed random variables. For definiteness we take $\ell_{i_1,\dots i_d}$ to have uniform distribution in [0, 1], although other distributions can be studied similarly.

For a sample characterized by the values of $\ell_{i_1,\dots i_d}$, the partition function at inverse temperature $\tilde{\beta} \equiv T^{-1}$ is

$$Z_{\ell} = \sum_{\{n_{i_1,\dots,i_d}\}} {}' e^{-\tilde{\beta}H[\{n_{i_1,\dots,i_d}\}]}, \tag{3}$$

where the sum with a prime is over all possible matchings using the constraint (2). In the thermodynamic limit $(M \to \infty)$, only the behavior at the lowest values of ℓ_{i_1,\dots,i_d} matters. Indeed, if we consider a given site in any of the d sets, it is to be assigned to a low cost hyperedge; generally it is possible to assign it to one of the first shortest such hyperedges. This means that at large M, the typical cost of an occupied hyperedge in the low temperature regime should scale as $1/M^{d-1}$. It is thus convenient to work with rescaled quantities that are extensive (i.e., proportional to M): $E = M^{d-1}H$. This amounts to considering thermodynamic quantities and having $\beta = \tilde{\beta}/M^{d-1}$ as the control parameter: one should keep β fixed when taking the large M limit.

Given these considerations, we conjecture that the free energy density is self-averaging as in most disordered systems, and as rigorously proved for d = 2 [12].

Numerical study of the ground state.—For a given sample of the quenched disorder, we want to determine the ground-state energy E_0 which is the minimum of all $E[\{n_{i_1,...i_d}\}]$. An exhaustive search over all matchings works only for very small M (typically $M \le 6$ when $d \ge 3$) because of the rapid growth of the number $(M!)^{d-1}$ of legal matchings. We have followed instead a branch and bound (BB) approach which allows us to study intermediate M. From such an algorithm, we can test numerically whether E_0 is self-averaging and study its large M limit.

The determination of the best matching uses a search tree. All the nodes at level p of this tree correspond to having chosen hyperedges for the first p points of the set S_1 (ordered arbitrarily). To go from level p to level (p+1), we branch on all possible M^{d-1} choices for the next hyperedge. Then a path from the tree's root (level 0) to a leaf (level M) is a choice of M hyperedges which may or not correspond to a legal matching. The cost of a node in the tree is defined as the sum of the costs of its associated hyperedges when they do not overlap, or ∞ if the hyperedges overlap (i.e., they use a point of the d sets S_i more than once).

The BB algorithm searches the tree and implements pruning. For this, it needs an upper bound $E_{\rm ub}$ on E_0 ; we initialize this quantity before performing the search via the cost of a legal matching obtained by a greedy assignment of the hyperedges. Then the algorithm starts at the root of the tree (level 0) and searches it recursively. At each level, one branches on the M^{d-1} choices of hyperedges that take one to the next level. Every time the current node has a cost greater than $E_{\rm ub}$, all of its descendent nodes can be ignored as they cannot contain the ground state. If we reach level M, we have a legal matching which we keep if its cost is less than $E_{\rm ub}$ (and we update $E_{\rm ub}$ accordingly). Upon termination, we have the ground state and $E_0 = E_{\rm ub}$.

We have implemented this algorithm along with a number of optimizations. For our computer program, one d=3 sample at M=20 takes typically 5 s on a 2 GHz PC, and the CPU time grows by a factor around 2.2 every time M is increased by 1. We have performed runs for $M \leq 22$ with 20 000 samples at each M. From these data, we have extracted \overline{E}_0 , the disorder average of E_0 ; the mean cost per node is shown in Fig. 1. The data for $M \geq 10$ are well fitted by a quadratic curve in 1/M, giving $\overline{E}_0/M \rightarrow 3.06 \pm 0.03$; a power law fit of the same quality gives $\overline{E}_0/M \rightarrow 3.09 \pm 0.03$. In the inset of the figure, we show that the standard deviation $\sigma(E_0)$ scales as \sqrt{M} , which is evidence for self-averaging and also suggests a central limit theorem behavior when $M \rightarrow \infty$.

Finally, we have also investigated a bit the case of d=4; however, we were limited to $M \le 15$ and used only 5000 samples. (The CPU time grows by about the same factor when M is increased by 1 as when d=3.) Our best fit in this case leads to $\overline{E}_0/M \to 7.2 \pm 0.3$.

Thermodynamics and the cavity approach.—The recent formulation of the cavity method [13] for diluted systems offers a choice tool to study the thermodynamics of the MIMP analytically. Building on the idea that the optimal matching selects preferentially the hyperedges with the lowest costs, we dilute the initially complete hypergraph by suppressing hyperedges with $\ell_{i_1,\dots,i_d} > CM^{1-d}$ [14]. In the resulting graph, the degree of each site is a Poisson distributed variable of mean C. When increasing M to M+1, a new set of d sites is added. Each of them is connected to a finite number of neighbors. The partition function associated with the one new site is easily computed in terms of the probability, $\exp[\beta(x_i - C/d)]$, of unoccupation of each of its neighbors (say neighbor i) in the Md sites problem. Assuming a replica symmetric (RS) structure, the order parameter is the probability $\mathcal{P}(x)$ that a randomly chosen site i has $x_i = x$, which satisfies the self-consistent equation:

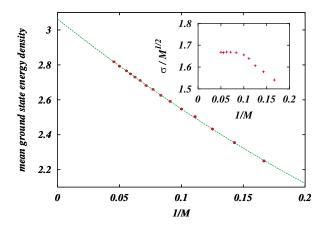


FIG. 1 (color online). Mean ground-state energy density \overline{E}_0/M as a function of 1/M in the three-index problem and our best fit. Inset: standard deviation $\sigma(E_0)/\sqrt{M}$ versus 1/M.

217205-2 217205-2

$$\mathcal{P}(x) = \sum_{k=0}^{\infty} \frac{C^k e^{-C}}{k!} \int_0^C \prod_{a=1}^k \frac{d\xi_a}{C} \int \prod_{a=1}^k \prod_{j_a=1}^{d-1} dx_{j_a} \mathcal{P}(x_{j_a})$$

$$\times \delta \left[x + \frac{1}{\beta} \ln \left(e^{-\beta C/d} + \sum_{a=1}^k e^{-\beta (\xi_a - \sum_{j_a=1}^{d-1} x_{j_a})} \right) \right].$$
(4)

The free energy $f_{rs}(\beta)$ can be obtained from $\mathcal{P}(x)$ as

$$f_{rs}(\beta) = -\frac{d}{\beta} \left\langle \ln \left(e^{-\beta C/d} + \sum_{a=1}^{k} e^{-\beta(\xi_a - \sum_{j=1}^{d-1} x_{j_a})} \right) \right\rangle + \frac{(d-1)C}{\beta} \left\langle \ln(1 + e^{-\beta(\xi - \sum_{j=1}^{d} x_j)}) \right\rangle,$$
 (5)

where $\langle \cdots \rangle$ stands for the averages of the cavity fields x with the distribution \mathcal{P} , of the connectivities k with the Poissonian distribution of mean C, and of the truncated costs ξ with the uniform distribution in [0, C], as in (4). Our reduction to a diluted model provides an alternative but equivalent approach to the replica [6], cavity [15], and objective [7] methods developed in the BMP case.

However, while correctly describing the d=2 problem, these RS equations are inconsistent when d>2. We discuss specifically the d=3 case. First, the entropy becomes negative for $\beta>\beta_s=0.412\pm0.001$, as shown in Fig. 2. Second, we have found the RS solution to be unstable for $\beta>\beta_i$, with $\beta_i\simeq0.6$ [16]. These two facts show that a discontinuous phase transition takes place at some inverse temperature $\beta_c\leq\beta_s$. Such transitions are also present in other NP-hard combinatorial optimization problems like K-SAT, and are usually overcome by passing to a one-step replica symmetry broken (1RSB) formalism [1]. Here, however, the direct application of the

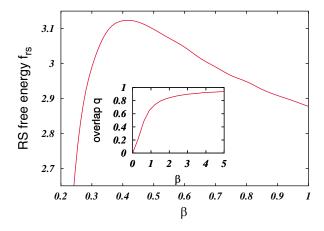


FIG. 2 (color online). Free energy density as a function of inverse temperature β in the three-index matching problem from a population dynamics resolution [13] of the RS cavity equations (4) with a large enough value of C. (Here C=60.). Note that the entropy $s=\beta^2\partial f_{\rm rs}/\partial\beta$ is negative for $\beta\geq\beta_s=0.412\pm0.001$. Inset: overlap q between equilibrium configurations as a function of β ; in the glassy phase, the overlap is given by $q(\beta_s)=0.321\pm0.002$.

1RSB cavity method at zero temperature [2] turns out to be unadapted.

The originality of the MIMP comes from the peculiar nature of the low temperature phase. This phase is dominated by isolated configurations, instead of clusters of configurations that generally arise in 1RSB systems [1]: the 1RSB clusters have no internal entropy here, a situation which is also found in some other disordered systems, the REM (random energy model [17]), the directed polymer on disordered tree [18], the binary perceptron [19], and the Gallager error-correcting code model [5]. Upon cooling, these systems freeze when reaching the temperature $1/\beta_s$ where the entropy becomes zero. As a result, the thermodynamical properties can be derived from the knowledge of just the RS solution. The free energy is given by

$$f(\beta) = \begin{cases} f_{rs}(\beta) & \text{if } \beta \le \beta_s, \\ f_{rs}(\beta_s) & \text{if } \beta \ge \beta_s. \end{cases}$$
 (6)

Necessary conditions for this *frozen* 1RSB ansatz to hold include the existence of a finite β_s , where the RS entropy becomes negative, the stability of the RS solution up to (at least) β_s and the absence of any discontinuous 1RSB transition before β_s (as we have checked from a finite β 1RSB population dynamics investigation).

On top of these properties, a crucial necessary condition for the frozen 1RSB ansatz to hold is that the system must be subject to a restricted class of constraints, which we call hard constraints [16]. For matching problems, hard constraints reflect the requirement to realize perfect matchings and basically mean that the occupancy of a hyperedge is uniquely determined by that of its neighbors; the same property appears in the study of XORSAT problems (exclusive "OR" SAT), when restricting to the core [20,21]. This is to be contrasted with the situation in coloring, for instance, where the color of a site is not necessarily uniquely prescribed by the colors of its neighbors. The full freezing into isolated configuration is thus physically understood by the special nature of the constraints. Notice that the d = 2 case satisfies all the above requirements, except for the fact that $\beta_s = \infty$.

The prediction (6) yields a ground-state energy density $\overline{E}_0/M = f_{\rm rs}(\beta_s) = 3.126 \pm 0.002$ (see Fig. 2); our BB numerical estimate is compatible with this value considering the systematic effects arising from the small M used there. When d=4, we find similarly a ground-state energy density $\overline{E}_0/M = 7.703 \pm 0.002$ (with $\beta_s = 0.135 \pm 0.002$); here again the BB estimate we obtained is close to this value.

Overlaps.—The cavity method gives access to the typical overlap q between equilibrium configurations,

$$q = \frac{1}{M} \sum_{i_1,\dots,i_d} \overline{\langle n_{i_1,\dots,i_d} \rangle^2},\tag{7}$$

with $\langle \cdots \rangle$ and the overline denoting, respectively, the thermal and the disorder averages. This overlap can be

217205-3 217205-3

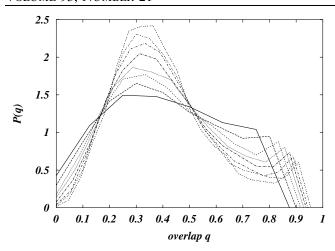


FIG. 3. Distribution of overlaps between the ground state and the first excited state for d = 3 MIMP for M = 8 to M = 22 (M even and from bottom to top at q = 0.32).

expressed in terms of the order parameter $\mathcal{P}(x)$. For d = 3, we find $q(\beta_s) = 0.321 \pm 0.002$. Because of the special nature of the frozen 1RSB phase at $\beta > \beta_s$, we expect that, if we take at random two configurations among the r lowest energy configurations, their overlap will be equal to $q(\beta_s)$ with probability 1 (for any fixed r, in the large M limit).

To test this prediction, we have generalized the BB method to get numerically the overlap between the ground state and the first excited state. Figure 3 shows the disorder averaged distribution of this overlap. The data are consistent with a distribution becoming peaked at large M at an overlap around 0.32, as theoretically predicted from the cavity approach. Note also that the overlaps at higher values seem to decay to zero: this is exactly the prediction of the absence of configurational entropy, i.e., a consequence of the freezing scenario which we argued arises in this system.

Another numerical check of the validity of the scenario comes from the measurement of the density $\mathcal{N}(E-E_0)$ of configurations as a function of energy. When $(E-E_0)/M$ is small, we find that $\overline{\ln \mathcal{N}} \simeq \ln \overline{\mathcal{N}} \simeq \gamma(E-E_0)$, with $\gamma(d=3) \simeq 0.405$, and $\gamma(d=4) \simeq 0.14$. These values of γ agree with the inverse freezing temperature β_s found in the cavity method.

Discussion.—We have investigated the thermodynamics of the d-index matching problem. For $d \geq 3$ it differs from the (two-index) matching in being NP hard and in having a low temperature glassy phase. Physically, in the latter case it is much more difficult to find a second low energy configuration in the neighborhood of a first one. It would be interesting to study this effect further along the lines of [22,23]. The glassy phase is of a special type, distinct from the one found in other recently solved NP-complete decision problems, because it has vanishing

internal entropy. In this respect, the MIMP behaves as a REM [17], freezing into a few configurations.

We have derived the full phase diagram; we conjecture these results to be exact, and the numerical checks which we have performed on relatively small systems, through an efficient BB algorithm, are consistent with the predictions. It will be extremely interesting to generalize to this problem the rigorous mathematical methods developed for the BMP.

This work was supported in part by the European Community's Human Potential Programme under Contracts No. HPRN-CT-2002-00307 (DYGLAGEMEM) and No. HPRN-CT-2002-00319 (STIPCO), as well as by the Community's EVERGROW Integrated Project.

- [1] M. Mézard, G. Parisi, and M. A. Virasoro, *Spin-Glass Theory and Beyond*, Lecture Notes in Physics Vol. 9 (World Scientific, Singapore, 1987).
- [2] M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812 (2002).
- [3] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys. Rev. Lett. 89, 268701 (2002).
- [4] M. Weigt and A. K. Hartmann, J. Phys. A 36, 11069 (2003).
- [5] A. Montanari, Eur. Phys. J. B 23, 121 (2001).
- [6] M. Mézard and G. Parisi, J. Phys. (Paris), Lett. 46, L771 (1985).
- [7] D. J. Aldous, Rand. Struct. Algo. 18, 381 (2001).
- [8] W. P. Pierskalla, Oper. Res. 16, 422 (1968).
- [9] R. Karp, in *Complexity of Computer Computations*, edited by R. Miller and J. Thatcher (Plenum Press, New York, 1972), pp. 85–103.
- [10] A. B. Poore, Comput. Opt. Appl. 3, 27 (1994).
- [11] J. Pusztaszeri, P. E. Rensing, and T. M. Liebling, J. Global Optim. 16, 422 (1995).
- [12] D. J. Aldous, Rand. Struct. Algo. 1, 383 (1990).
- [13] M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).
- [14] Since diluted hypergraphs do not admit any perfect matching, we must allow for unoccupied sites: we introduce a chemical potential $\mu = C/d$, conjugate to the number of occupied sites, which is sent to infinity with C at the end of the computation.
- [15] W. Krauth and M. Mézard, Europhys. Lett. 8, 213 (1989).
- [16] O. C. Martin, M. Mézard, and O. Rivoire (to be published).
- [17] B. Derrida, Phys. Rev. Lett. 45, 79 (1980).
- [18] B. Derrida and H. Spohn, J. Stat. Phys. **51**, 817 (1988).
- [19] W. Krauth and M. Mézard, J. Phys. (Paris) **50**, 3057 (1989).
- [20] S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Phys. Rev. Lett. 90, 047205 (2003).
- [21] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys. 111, 505 (2003).
- [22] J. Houdayer and O. C. Martin, Phys. Rev. Lett. 81, 2554 (1998).
- [23] D. J. Aldous and A. G. Percus, Proc. Natl. Acad. Sci. U.S.A. 100, 11211 (2003).

217205-4 217205-4