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The multi-index matching is an NP-hard combinatorial optimization problem; for two indices it
reduces to the well understood bipartite matching problem that belongs to the polynomial complexity
class. We use the cavity method to solve the thermodynamics of the multi-index system with random
costs. The phase diagram is much richer than for the case of the bipartite matching problem: it shows a
finite temperature phase transition to a completely frozen glass phase, similar to what happens in the
random energy model. We derive the critical temperature, the ground-state energy density, and
properties of the energy landscape and compare the results to numerics based on exact analysis of
small systems.
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It has been recognized early on that one important
motivation of the research in spin glass theory is the
ubiquity of systems with frustration and disorder [1]. In
particular, recent statistical physics studies have brought
interesting new results in some important computer sci-
ence problems. Notable examples are found in optimiza-
tion [e.g., K satisfiability (K-SAT) [2], graph coloring [3],
or vertex cover [4]] and information theory (e.g., error-
correcting codes [5]). So far, the most interesting appli-
cations of spin glass theory have been obtained in this
emerging field, which is witnessing an upsurge of inter-
disciplinary studies involving physicists, computer scien-
tists, and probabilists.

One of the first optimization problems studied analyti-
cally by physics methods was the random bipartite
matching problem (BMP). It is also a simple problem:
from the computer science point of view, it belongs to the
class P of polynomial complexity; from the physics point
of view, it has no phase transition at finite temperature,
and its solution with the replica method [6] shows a
simple replica symmetric behavior. Interestingly, the va-
lidity of this solution has been recently confirmed by a
rigorous mathematical analysis [7].

Here we study the multi-index matching problem
(MIMP), a natural extension [8] of the BMP. This is a
more complicated problem: it belongs to the NP-hard
class, and as we will see, it exhibits a finite temperature
phase transition, with a low temperature glassy phase.
Using the cavity method, we find that this phase consists
of isolated configurations, and we conjecture that our
method yields an exact solution. Because of its structural
resemblance to the BMP, one may hope that the MIMP
will be amenable to rigorous study, generalizing the
construction of [7] to a problem with a glass phase.

The random MIMP.—In the BMP one is given two sets
of M points, S1 and S2. Each point of S1 must be
‘‘matched’’ or assigned to one point of S2. This matching
must be one-to-one, and it can be represented by the
‘‘occupation’’ of the edges between the points of the
0031-9007=04=93(21)=217205(4)$22.50 
two sets; we define nii;i2 � 1 if the points �i1; i2� 2 S1 �
S2 are matched, while ni1;i2 � 0 otherwise. To each
matching we associate a cost or energy, which is the
sum of the costs of each occupied edge.

The MIMP is a straightforward generalization of this
problem to more than two indices. Given d sets S1; . . . ; Sd,
each of M sites, a hyperedge is a d-uplet where exactly one
site from each set appears. For each hyperedge we intro-
duce a cost ‘i1;...;id , and the total cost of a (multi-index)
matching is given, in terms of the occupation numbers of
hyperedges, by

H�fni1;...;idg	 �
X

i1;...;id

‘i1;...;idni1;...;id : (1)

The occupation numbers of hyperedges, ni1;...;id 2 f0; 1g
must be such that each site appears exactly once:

8 r 2 f1; . . . ; dg; 8 ir;
X

i1;...;ir�1;ir�1;...;id

ni1;...;id � 1:

(2)

The optimization problem consists in finding the mini-
mum cost matching. What makes this problem difficult is
the constraint (2) of having each site appear exactly in
just one hyperedge; for d 
 3 the MIMP is NP hard [9].
MIMP arise for instance when assigning tasks (jobs) to
people in particular time slots or in different places. An
application also arises in the context of track reconstruc-
tion [10]: given the positions of M unlabeled particles at d
different times, one is to determine the tracks or trajec-
tories of each. This kind of formulation is, in fact, used for
track reconstruction in high energy physics [11].

We study the random MIMP where the individual costs
‘i1;...id are independent identically distributed random
variables. For definiteness we take ‘i1;...id to have uniform
distribution in �0; 1	, although other distributions can be
studied similarly.

For a sample characterized by the values of ‘i1;...id , the
partition function at inverse temperature ~� � T�1 is
2004 The American Physical Society 217205-1
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FIG. 1 (color online). Mean ground-state energy density
E0=M as a function of 1=M in the three-index problem and
our best fit. Inset: standard deviation ��E0�=

�����
M

p
versus 1=M.
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Z‘ �
X

fni1 ;...;id g

0e�
~�H�fni1 ;...;id g	; (3)

where the sum with a prime is over all possible matchings
using the constraint (2). In the thermodynamic limit
(M ! 1), only the behavior at the lowest values of
‘i1;...;id matters. Indeed, if we consider a given site in
any of the d sets, it is to be assigned to a low cost hyper-
edge; generally it is possible to assign it to one of the first
shortest such hyperedges. This means that at large M, the
typical cost of an occupied hyperedge in the low tem-
perature regime should scale as 1=Md�1. It is thus conve-
nient to work with rescaled quantities that are extensive
(i.e., proportional to M): E � Md�1H. This amounts to
considering thermodynamic quantities and having � �
~�=Md�1 as the control parameter: one should keep �
fixed when taking the large M limit.

Given these considerations, we conjecture that the free
energy density is self-averaging as in most disordered
systems, and as rigorously proved for d � 2 [12].

Numerical study of the ground state.—For a given
sample of the quenched disorder, we want to determine
the ground-state energy E0 which is the minimum of all
E�fni1;...idg	. An exhaustive search over all matchings
works only for very small M (typically M � 6 when d 

3) because of the rapid growth of the number �M!�d�1 of
legal matchings. We have followed instead a branch and
bound (BB) approach which allows us to study intermedi-
ate M. From such an algorithm, we can test numerically
whether E0 is self-averaging and study its large M limit.

The determination of the best matching uses a search
tree. All the nodes at level p of this tree correspond to
having chosen hyperedges for the first p points of the set
S1 (ordered arbitrarily). To go from level p to level �p�
1�, we branch on all possible Md�1 choices for the next
hyperedge. Then a path from the tree’s root (level 0) to a
leaf (level M) is a choice of M hyperedges which may or
not correspond to a legal matching. The cost of a node in
the tree is defined as the sum of the costs of its associated
hyperedges when they do not overlap, or 1 if the hyper-
edges overlap (i.e., they use a point of the d sets Si more
than once).

The BB algorithm searches the tree and implements
pruning. For this, it needs an upper bound Eub on E0; we
initialize this quantity before performing the search via
the cost of a legal matching obtained by a greedy assign-
ment of the hyperedges. Then the algorithm starts at the
root of the tree (level 0) and searches it recursively. At
each level, one branches on the Md�1 choices of hyper-
edges that take one to the next level. Every time the
current node has a cost greater than Eub, all of its de-
scendent nodes can be ignored as they cannot contain the
ground state. If we reach level M, we have a legal match-
ing which we keep if its cost is less than Eub (and we
update Eub accordingly). Upon termination, we have the
ground state and E0 � Eub.
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We have implemented this algorithm along with a
number of optimizations. For our computer program,
one d � 3 sample at M � 20 takes typically 5 s on a
2 GHz PC, and the CPU time grows by a factor around
2.2 every time M is increased by 1. We have performed
runs for M � 22 with 20 000 samples at each M. From
these data, we have extracted E0, the disorder average of
E0; the mean cost per node is shown in Fig. 1. The data for
M 
 10 are well fitted by a quadratic curve in 1=M,
giving E0=M ! 3:06� 0:03; a power law fit of the
same quality gives E0=M ! 3:09� 0:03. In the inset of
the figure, we show that the standard deviation ��E0�

scales as
�����
M

p
, which is evidence for self-averaging and

also suggests a central limit theorem behavior when
M ! 1.

Finally, we have also investigated a bit the case of d �
4; however, we were limited to M � 15 and used only
5000 samples. (The CPU time grows by about the same
factor when M is increased by 1 as when d � 3.) Our best
fit in this case leads to E0=M ! 7:2� 0:3.

Thermodynamics and the cavity approach.—The recent
formulation of the cavity method [13] for diluted systems
offers a choice tool to study the thermodynamics of the
MIMP analytically. Building on the idea that the optimal
matching selects preferentially the hyperedges with the
lowest costs, we dilute the initially complete hypergraph
by suppressing hyperedges with ‘i1;:::;id > CM1�d [14]. In
the resulting graph, the degree of each site is a Poisson
distributed variable of mean C. When increasing M to
M� 1, a new set of d sites is added. Each of them is
connected to a finite number of neighbors. The partition
function associated with the one new site is easily com-
puted in terms of the probability, exp���xi � C=d�	, of
unoccupation of each of its neighbors (say neighbor i) in
the Md sites problem. Assuming a replica symmetric
(RS) structure, the order parameter is the probability
P �x� that a randomly chosen site i has xi � x, which
satisfies the self-consistent equation:
217205-2
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P �x� �
X1
k�0

Cke�C

k!
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0
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a�1

d�a
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a�1

Yd�1

ja�1

dxjaP �xja�
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�
x�

1

�
ln
�
e��C=d �

Xk
a�1

e����a�
P

d�1
ja�1

xja �
�	
:

(4)

The free energy frs��� can be obtained from P �x� as

frs��� � �
d
�



ln
�
e��C=d �

Xk
a�1

e����a�
P

d�1
ja�1

xja �
��

�
�d� 1�C

�
hln�1� e�����

P
d
j�1

xj��i; (5)

where h� � �i stands for the averages of the cavity fields x
with the distribution P , of the connectivities k with the
Poissonian distribution of mean C, and of the truncated
costs � with the uniform distribution in �0; C	, as in (4).
Our reduction to a diluted model provides an alternative
but equivalent approach to the replica [6], cavity [15], and
objective [7] methods developed in the BMP case.

However, while correctly describing the d � 2 prob-
lem, these RS equations are inconsistent when d > 2. We
discuss specifically the d � 3 case. First, the entropy
becomes negative for �> �s � 0:412� 0:001 , as shown
in Fig. 2. Second, we have found the RS solution to be
unstable for �> �i, with �i ’ 0:6 [16]. These two facts
show that a discontinuous phase transition takes place at
some inverse temperature �c � �s. Such transitions are
also present in other NP-hard combinatorial optimization
problems like K-SAT, and are usually overcome by pass-
ing to a one-step replica symmetry broken (1RSB) for-
malism [1]. Here, however, the direct application of the
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FIG. 2 (color online). Free energy density as a function of
inverse temperature � in the three-index matching problem
from a population dynamics resolution [13] of the RS cavity
equations (4) with a large enough value of C. (Here C � 60.).
Note that the entropy s � �2@frs=@� is negative for � 
 �s �
0:412� 0:001. Inset: overlap q between equilibrium configu-
rations as a function of �; in the glassy phase, the overlap is
given by q��s� � 0:321� 0:002.
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1RSB cavity method at zero temperature [2] turns out to
be unadapted.

The originality of the MIMP comes from the peculiar
nature of the low temperature phase. This phase is domi-
nated by isolated configurations, instead of clusters of
configurations that generally arise in 1RSB systems [1]:
the 1RSB clusters have no internal entropy here, a situa-
tion which is also found in some other disordered systems,
the REM (random energy model [17]), the directed poly-
mer on disordered tree [18], the binary perceptron [19],
and the Gallager error-correcting code model [5]. Upon
cooling, these systems freeze when reaching the tempera-
ture 1=�s where the entropy becomes zero. As a result, the
thermodynamical properties can be derived from the
knowledge of just the RS solution. The free energy is
given by

f��� �
�
frs��� if � � �s;
frs��s� if � 
 �s:

(6)

Necessary conditions for this frozen 1RSB ansatz to
hold include the existence of a finite �s, where the RS
entropy becomes negative, the stability of the RS solution
up to (at least) �s and the absence of any discontinuous
1RSB transition before �s (as we have checked from a
finite � 1RSB population dynamics investigation).

On top of these properties, a crucial necessary condi-
tion for the frozen 1RSB ansatz to hold is that the system
must be subject to a restricted class of constraints, which
we call hard constraints [16]. For matching problems,
hard constraints reflect the requirement to realize perfect
matchings and basically mean that the occupancy of a
hyperedge is uniquely determined by that of its neigh-
bors; the same property appears in the study of XORSAT
problems (exclusive ‘‘OR’’ SAT), when restricting to the
core [20,21]. This is to be contrasted with the situation in
coloring, for instance, where the color of a site is not
necessarily uniquely prescribed by the colors of its neigh-
bors. The full freezing into isolated configuration is thus
physically understood by the special nature of the con-
straints. Notice that the d � 2 case satisfies all the above
requirements, except for the fact that �s � 1.

The prediction (6) yields a ground-state energy density
E0=M � frs��s� � 3:126� 0:002 (see Fig. 2); our BB
numerical estimate is compatible with this value consid-
ering the systematic effects arising from the smallM used
there. When d � 4, we find similarly a ground-state en-
ergy density E0=M � 7:703� 0:002 (with �s � 0:135�
0:002); here again the BB estimate we obtained is close to
this value.

Overlaps.—The cavity method gives access to the typi-
cal overlap q between equilibrium configurations,

q �
1

M

X
i1;...;id

hni1;...;idi
2; (7)

with h� � �i and the overline denoting, respectively, the
thermal and the disorder averages. This overlap can be
217205-3
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FIG. 3. Distribution of overlaps between the ground state and
the first excited state for d � 3 MIMP for M � 8 to M � 22 (M
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expressed in terms of the order parameter P �x�. For d �
3, we find q��s� � 0:321� 0:002. Because of the special
nature of the frozen 1RSB phase at �> �s, we expect
that, if we take at random two configurations among the r
lowest energy configurations, their overlap will be equal
to q��s� with probability 1 (for any fixed r, in the large M
limit).

To test this prediction, we have generalized the BB
method to get numerically the overlap between the
ground state and the first excited state. Figure 3 shows
the disorder averaged distribution of this overlap. The
data are consistent with a distribution becoming peaked
at large M at an overlap around 0.32, as theoretically
predicted from the cavity approach. Note also that the
overlaps at higher values seem to decay to zero: this is
exactly the prediction of the absence of configurational
entropy, i.e., a consequence of the freezing scenario which
we argued arises in this system.

Another numerical check of the validity of the scenario
comes from the measurement of the density N �E� E0�
of configurations as a function of energy. When �E�

E0�=M is small, we find that lnN ’ lnN ’ !�E� E0�,
with !�d � 3� ’ 0:405, and !�d � 4� ’ 0:14. These val-
ues of ! agree with the inverse freezing temperature �s
found in the cavity method.

Discussion.—We have investigated the thermodynam-
ics of the d-index matching problem. For d 
 3 it differs
from the (two-index) matching in being NP hard and in
having a low temperature glassy phase. Physically, in the
latter case it is much more difficult to find a second low
energy configuration in the neighborhood of a first one. It
would be interesting to study this effect further along the
lines of [22,23]. The glassy phase is of a special type,
distinct from the one found in other recently solved NP-
complete decision problems, because it has vanishing
217205-4
internal entropy. In this respect, the MIMP behaves as a
REM [17], freezing into a few configurations.

We have derived the full phase diagram; we conjecture
these results to be exact, and the numerical checks which
we have performed on relatively small systems, through
an efficient BB algorithm, are consistent with the pre-
dictions. It will be extremely interesting to generalize to
this problem the rigorous mathematical methods devel-
oped for the BMP.
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[2] M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
(2002).

[3] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys.
Rev. Lett. 89, 268701 (2002).

[4] M. Weigt and A. K. Hartmann, J. Phys. A 36, 11069
(2003).

[5] A. Montanari, Eur. Phys. J. B 23, 121 (2001).
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