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Using the renormalization group method we investigate the nonequilibrium relaxation of the (Cardy-
Ostlund) 2D random sine-Gordon model, which describes pinned arrays of lines. Its statics exhibit a
marginal (� � 0) glass phase for T < Tg described by a line of fixed points. We obtain the universal
scaling functions for two-time dynamical response and correlations near Tg for various initial
conditions, as well as the autocorrelation exponent. The fluctuation dissipation ratio is found to be
nontrivial and continuously dependent on T.
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Tremendous progress has been achieved in recent years
in the detailed understanding of the off equilibrium re-
laxational dynamics (e.g., coarsening) of pure systems.
For instance, the scaling forms of response and correla-
tions are well characterized and several autocorrelation
and persistence exponents have been computed using
powerful methods [1]. By contrast, analytical studies of
aging properties of random and complex systems have
been mostly achieved within mean field theory [2]. These
works have unveiled the existence of nontrivial fluctua-
tion dissipation ratios (FDR), X. These generalize to
nonequilibrium situations the fluctuation dissipation rela-
tion between (disorder averaged) integrated response and
correlation [2] and can be interpreted as an effective
temperature Teff � T=X [3]. These were later investigated
beyond mean field for pure systems. Although they ap-
pear to be trivial for some pure domain growth processes
[4], they were later found to be novel universal quantities
at pure critical points [5,6].

The description of glassy states beyond mean field
needs to take into account a very broad distribution of
relaxation times originating from rare sample to sample
fluctuations and distribution of barrier heights [7]. In this
context it is not obvious how (or whether) the off equi-
librium dynamical scaling valid for pure systems extends
to this case. Also it is not obvious that various definitions
of FDR (using different observables, or different config-
urational averages) are equivalent and meaningful [8–10].
Some results were obtained for the random mass Ising
critical point, via renormalization group (RG). The dy-
namical (z) and autocorrelation (�C) exponent were com-
puted [11]. A definition of the FDR (for the zero mode)
was found to be nontrivial [12] and obtained to one loop.

Whether such results hold within a glass phase, away
from a phase transition, is still an outstanding question. A
prototype system which exhibits a glass phase, while
analytically more tractable, is the disordered elastic
manifold in a random potential [13]. It describes a variety
of physical situations, both in or out of equilibrium,
ranging from visualization of pinned domain wall relaxa-
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tion in magnets [14,15], nonequilibrium transport in
electronic glasses [16], to mesoscopic fluctuations in vor-
tex physics [17]. Here we investigate the case of a periodic
manifold, a case which can be mapped [18,19] onto the
so-called Cardy-Ostlund (CO), 2D-random sine-Gordon
model [20], defined by the Hamiltonian

H�
� �
Z
d2x

�
1

2
�rx
�x��

2 � Re�
�x�ei
�x��
�
; (1)

where 
�x� 2� �1;
1� is an XY phase (excluded vor-
tices), 
�x� is a quenched Gaussian random field, i.e., a
complex variable, with random phase, and 
�x�
�x0�� �
g��2��x� x0�. The statics of (1) has been extensively
studied analytically and numerically, in the context of
planar flux line arrays [with displacement field u �
a
=�2�� and mean spacing a] and solid on solid models
with disordered substrates. It is known to exhibit a glass
phase [21,22] below Tg (� 4� ) described by a line of
fixed points perturbatively controlled by the small pa-
rameter � � �Tg � T�=Tg (see, however, [23]). By con-
trast, its (nondriven) nonequilibrium dynamics has been
studied only within Gaussian variational approximation
[24], known already in statics to yield unreliable results
for some observables [25]. There is thus the need for a
controlled study via RG.

In this Letter we study the relaxation dynamics for the
CO model in the glass phase T < Tg starting from various
initial conditions at ti � 0 (e.g., with the same corre-
lations as the pure model at equilibrium at tempera-
ture T0). We compute, to lowest order in � using RG
along the fixed line, the two-time (t0 < t) response R,
as well as the connected ~C and, respectively, off-diagonal
C correlations. These are found to be characterized by
(T0-dependent) universal scaling functions of qz�t� t0�
and t=t0, q being the wave vector. We find that an auto-
correlation exponent can be consistently defined, i.e., with
� ~C � �R, only from the connected correlation (while the
decay of C is too slow). Similarly, the associated FDR,
found to be a scaling function, reaches at large time
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separation (t=t0 ! 1) a nontrivial (and to one loop,
q-independent) limit X1 which is nonzero only for the
connected correlation. This sheds light on relevant defi-
nition of the FDR in a glass phase.

Let us start by a short discussion of the statics. The
two-point correlation function exhibits anomalous
growth

h�
�x� �
�0��2i � A���ln2�x� 
O�lnx�: (2)

The RG to one loop [26] yields the universal [27] A��� �
2�2 
O��3�. Numerical simulations near Tc [28] and at
T � 0 agree qualitatively and yield A�� � 1� � a2 �
0:57 [29] and A�� � 1� � 2�2��2B � 0:51 [30]. A recent
work [31] claims an exact solution for the two-point
correlation using a conjectured mapping onto disordered
free fermion model. The result, translated in the present
variables, would yield A��� � 2�2�1� �2�. This, how-
ever, is clearly incompatible with numerics, showing
that there is more (nonperturbative ?) physics to be under-
stood even in the statics of this model. A more direct
signature of the glassy nature of the phase is the sample to
sample susceptibility fluctuations [22] which are found
(within one loop RG) to be universal and �O��� along the
fixed line. The free energy exponent in this glass phase is
� � 0, indicating a free energy landscape with logarith-
mic roughness. This is consistent with the findings in the
equilibrium dynamics: an anomalous diffusion exponent
[32], continuously varying along the fixed line has been
computed in RG which indicates a logarithmic growth of
energy barriers with scale. These properties are charac-
teristic of a marginal glass (by contrast with the case � >
0 described by a T � 0 fixed point). It is reminiscent of a
related and simpler case of a vortex in a random gauge XY
model where a freezing transition (at zc � 4) was found
along a line of fixed points [33].

The relaxational dynamics of the CO model (1) is
described by a Langevin equation

 
@
@t

�x; t� � �

�H�
�x; t��
�
�x; t�


 "�x; t�; (3)

where the thermal noise "�x; t� is such that h"�x; t�i � 0,
h"�x; t�"�x0; t0�i � 2 T��2��x� x0���t� t0�, where T < Tg
is the temperature and  is the friction ( � 1 in the
following). The system at initial time ti ( � 0) is prepared
in an equilibrium state of (1) without disorder at tempera-
ture T0 � #T, �
q;t�0
�q;t�0�i � T0q�2, 
q;t being the
Fourier transform, with respect to (wrt) space coordi-
nates, of the field 
�x; t�. Since the disorder is irrelevant
above Tg, this choice of initial condition for T0 > Tg
describes a quench from a high temperature phase to
the glass phase (T < Tg). A quench to high temperature
(T > Tg) is studied in [34].

We focus on the correlation Cq
tt0 and the connected (wrt

the thermal fluctuations) correlation ~Cq
tt0 :
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Cq
tt0 � �h
qt
�qt0 i�i;

~Cq
tt0 � �h
qt
�qt0 i�i � �h
qtih
�qt0 i�i

(4)

and the response Rq
tt0 to a small external field f�qt0 ,

R q
tt0 �

��h
qti
�f�qt0

�
i
; t > t0; (5)

where � � �, h� � �i, and �� � ��i denote, respectively, averages
wrt disorder, thermal fluctuations, and initial conditions.
We focus on the FDR Xq

tt0 associated to the observable 
:

1

Xq
tt0

�
@t0 ~C

q
tt0

TRq
tt0

(6)

defined [2] such that Xq
tt0 � 1 at equilibrium, i.e., when

response and correlations depend only on t� t0.
The dynamics (3) is then studied using the standard

Martin-Siggia-Rose formalism, using the Ito prescrip-
tion. The correlations (4) and response (5) are then ob-
tained from a dynamical (disorder averaged) generating
functional or, equivalently, as functional derivatives of the
corresponding dynamical effective action �. This func-
tional can be perturbatively computed [35] using the
exact RG equation associated to the multilocal operators
expansion introduced in [36]. It allows one to handle
arbitrary cutoff functions c�q2=2�2

0� and check univer-
sality, independence wrt c�x�, and the ultraviolet scale
�0. It describes the evolution of � when an additional
infrared cutoff �l is lowered from �0 to its final value
�l ! 0, where a fixed point of order O��� is reached. In
this limit, one obtains Rq

tt0 and ~Cq
tt0 (for t > t0) from

@tR
q
tt0 
 �q2 
&�t��Rq

tt0 

Z t

ti
dt1�tt1R

q
t1t0

� 0; (7)

~C
q
tt0 �2T

Z t0

ti
dt1R

q
tt1R

q
t0t1



Z t

ti
dt1

Z t0

ti
dt2R

q
tt1D

c
t1t2R

q
t0t2
;

(8)

with &�t� � �
R
t
ti
dt1�tt1 and where the self-energy �t1t2

and the noise-disorder kernel Dct1t2 are directly obtained
from � at the fixed point [37]. One finds [35,38]

�tt0 � �2#�1e(E�Rx�0
tt0 e

�1=2�B�0�

tt0

B�d�

tt0
�; (9)

Dctt0 � Tg2
#�1e(E�e�1=2�B�0�

tt0

B�d�

tt0
�
�1� e�C

�d�

tt0 �; (10)

where (E is the Euler constant, B�d�
tt0 � C�d�

tt 
 C�d�
t0t0 �

2C�d�
tt0 , C�d�

tt0 � (�t
 t0� � (�jt� t0j� is the bare Dirichlet
propagator at coinciding points, B�0�

tt0 � #�2(�t
 t0� �
(�t� � (�t0��, arising from the average over the initial
condition. We have defined (�t� � T

4�

R
a ĉ�a� ln��

2
0t


a
2�,

using the parametrization c�x� �
R
a ĉ�a�e

�ax for the cut-
off function, and denote Rx�0

tt0 � ��t� t0�
R
a ĉ�a���

2
0�t�

t0� 
 a
2�
�1 the bare response at coinciding points. Up to a

boundary term, the correlation Cqtt0 satisfies (8) setting the

e�C
�d�

tt0 term to zero in the above expression for Dctt0 .
217201-2



VOLUME 93, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S week ending
19 NOVEMBER 2004
Studying Eq. (7) (setting ti � 0), in the scaling regime
q=�0 � 1, �2

0t;�
2
0t

0 � 1 and keeping fixed

v� qz�t� t0�; u � t=t0; (11)

one finds a solution consistent with the scaling form:

R q
tt0 � qz�2�t=t0��RFR�qz�t� t0�; t=t0� (12)

similar to the form obtained for the response for critical
systems [11,39,40]. Here the two exponents z and �R are
identified from the logarithmic singularities of the scal-
ing function, respectively, at u! 1 and u! 1. We find
that z identifies with the equilibrium dynamical exponent
z� 2 � 2e(E�
O��2� and is thus, as expected, indepen-
dent of initial conditions under study. The exponent �R in
(12), characteristic of long time nonequilibrium relaxa-
tion is also independent of #:

�R � e(E�
O��2�: (13)

One also finds, with this choice of �R, that
limu!1FR�v; u� � FR1�v�. The full scaling function
FR�v; u�, however, depends on the initial conditions and
is universal (up to a single overall nonuniversal length
scale q! ,q). Its explicit expression, given in [38], con-
tains both nonequilibrium and equilibrium (u! 1) re-
gimes. We have checked to this order that it naturally
splits into FR�v; u� � Feq

R �v� 
 Fnoneq
R �v; u�. Here we give

the nonequilibrium scaling function only in the large
time separation limit u! 1:

Fnoneq
R1 �v��e�v

�Z v

0
dt2

Z t2

0
dt1�et2�t1 �1�~�t1t2 
-

�
;

~�t1t2 ��e
(E

1

�t2� t1�2

��
t2
 t1
2

��������
t2t1

p

�
1�#

�1
�
;

(14)

where the constant - �
R
1
1 dt2

R
1
0 dt1

~�t1t2 is a monotonic
decreasing function of #. The large v behavior is a power
law. The form (14) is convergent due to the subtraction of
the pole at t2 � t1. The logarithmic divergence associated
to this pole yields a nontrivial z exponent. The subtracted
piece precisely gives the equilibrium scaling function for
the response Feq

R �v�, up to O��2�:

Feq
R �v��e

�v
�e(E��v�1�Ei�v�e�v
e�v�1�; (15)

where Ei�v� is the exponential integral. The same result is
also obtained if ti is taken to be ti � �1 from the outset
(e.g., at large but fixed system size), showing that the
nonequilibrium regime of the scaling function merges
smoothly with the equilibrium one [41].

We now turn to correlation functions. To obtain the
equilibrium correlation one can simply use fluctuation-
dissipation theorem which holds in this regime (i.e.
Xq
tt0 � 1) and ~Cqeq

tt0 � Tq�2Feq
C �v�, with @vF

eq
C �v� �

�Feq
R �v�. One finds that at equilibrium and to this order

in �, ~C and C coincide.
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The nonequilibrium connected correlation is already
nontrivial in the absence of disorder [42]. It also takes a
scaling form ~Cqtt0 � Tq�2F0

~C
�q2�t� t0�; t=t0� with

F0
~C
�v; u� � e�jvj � e�v�u
1�=�u�1�, z � 2. The FDR Xqtt0 �

�1
 e�2v=�u�1���1 interpolates between 1 and 1=2 as u �

t=t0 increases from 1 to 1 (for q � 0), while Xq�0
tt0 � 1

2 is
the ‘‘random walk’’ value. In presence of disorder one can
solve (8) perturbatively in � using the above solution for
the response. One obtains that ~Cq

tt0 , in the scaling regime,
is consistent with the scaling form [43]

~C
q
tt0 � Tq�2�t=t0�� ~CF ~C�q

z�t� t0�; t=t0�: (16)

The calculation [38] shows that � ~C � �R, yielding an
autocorrelation exponent , ~C � �z�� ~C � 1�:

, ~C � 2
O��2�: (17)

This value of � ~C is also such that limu!1uF ~C�v; u� �
F ~C1�v�. We have obtained the complete expression of
F ~C�v; u� [38] from which we can extract the large u
behavior. We then discover the relation, valid for any #,

F ~C1�v� � �2
 4e(E��vFR1�v� 
O��2�: (18)

Having determined both response and correlation we
now obtain, in the scaling regime, the FDR (6). It is also
characterized by the universal scaling function

�Xq
tt0 �

�1 � FX�qz�t� t0�; t=t0�; (19)

which also depends on # and has a complicated form [38].
In the limit of large time separation, i.e., qz�t� t0� fixed,
t=t0 ! 1, using (14) and (18) it simplifies into

lim
u!1

�Xq
tt0 �

�1 � 2
 2e(E�
O��2� � �X1�
�1 (20)

independently of v and #, i.e., of a (small) wave vector and
the initial condition. There is thus a nontrivial asymptotic
FDR in the CO glass phase, which similarly to the case of
pure critical points is in the interval �1=2; 0�. Here, how-
ever, it continuously depends on temperature T.

As in previous works [6,10,12] one can also examine
the ‘‘diffusive’’ mode q � 0. It is possible to obtain a
simple analytical form for any u � t=t0 in the case # � 0
[flat initial conditions
�x; t � 0� � 0], up to order O��2�,

�Xq�0
tt0 ��1�Fdiff

X �u��2
2�e(E�1�arccoth�
���
u

p
��: (21)

Although this quantity depends on #, in general it reaches
an #-independent limit for u! 1. It is also interesting to
compute Xx�0

tt0 in real space. In previous works [6], it was
argued that

lim
t0!1

lim
t!1

Xx�0
tt0 � lim

t0!1
lim
t!1

Xq�0
tt0 � X1: (22)

The v independence found above (20) puts in the present
case these heuristic arguments on firmer ground [6].

Following the discussion in [2], this X1 leads to an
effective temperature Teff � T=X1, which can be mea-
217201-3
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sured by a thermometer coupled to the field 
�x; t�.
Indeed, Fourier transforming Eqs. (12) and (16), one
checks that the local Rx�0

tt0 and ~Cx�0
tt0 are precisely of

the form given in [45].
It turns out that it is crucial to consider the connected

correlation to obtain a nontrivial FDR. We have also
performed the calculation [35] for the correlation func-
tion Cq

tt0 (4). It exhibits a scaling form similar to (16)
which decreases more slowly than ~Cq

tt0 for large u. If we
impose limu!1uFC�v; u� � FC1�v� one finds, for # � 0,
that �C � � ~C 
 1

2 , leading to ,C � 1� e(E�
O��2�.
The FDR is found to be Xq�0

tt0 � �2
 �e(E
���
u

p
��1 and

thus does not seem to approach (uniformly in �) a non-
trivial limit at large u. Thus, although both correlations
give the same equilibrium result to order O���, only the
connected one, as defined here, yields a nontrivial asymp-
totic FDR in the nonequilibrium regime. For # � 0, the
large u behavior is dominated by the initial condition and
FC�v; u� � FC1�v� [40,46]. The present considerations
are also of interest for pure systems when initial condi-
tions are nonzero, e.g., in a quench from an ordered phase
(or correlated initial conditions # � 0) [34,40,46].
Indeed, in that case one can distinguish connected and
nonconnected correlations (4) which can also lead to
different behaviors of the FDR.

We have found a physically relevant glass phase in
which one can show analytically the existence of a non-
trivial FDR. It is a robust quantity independent of the
initial condition under study and, for some observables, it
appears to be related to an effective temperature Teff . Its
continuous dependence on T reflects the marginal char-
acter of this glass phase. Our analytical predictions can be
tested in numerical simulations [47]. They are in good
agreement near Tg, and it would be interesting to inves-
tigate the aging behavior at lower temperature, where
hints of some new physics already appear in the statics.
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