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Anomalous Coupling Between Topological Defects and Curvature
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We investigate a counterintuitive geometric interaction between defects and curvature in thin layers
of superfluids, superconductors, and liquid crystals deposited on curved surfaces. Each defect feels a
geometric potential whose functional form is determined only by the shape of the surface, but whose
sign and strength depend on the transformation properties of the order parameter. For superfluids and
superconductors, the strength of this interaction is proportional to the square of the charge and causes
all defects to be repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid
crystals in the one elastic constant approximation, charges between 0 and 4� are attracted by regions of
positive curvature while all other charges are repelled.

DOI: 10.1103/PhysRevLett.93.215301 PACS numbers: 67.70.+n, 03.50.Kk, 68.65.–k, 74.78.–w
The physics of topological defects on curved surfaces
plays an increasingly significant role in the engineering of
devices based on coated interfaces [1–3]. Defects also
affect the mechanical properties of some biological sys-
tems, such as spherical viruses, whose shape is dependent
on the presence of disclinations in their protein shell [4].
Furthermore, the effects induced by a curved substrate on
the distribution of defects are not fully understood even in
well studied systems such as thin superfluid or super-
conducting films. In this Letter, we study simple contin-
uum generalizations of the plane XY model to frozen
surfaces of varying curvature to gain a broad understand-
ing of the interaction between topological defects and
curvature.

The XY model is a simple setting in which particlelike
objects emerge from a more fundamental theory. The
basic degree of freedom is an angle-valued function on
the plane whose values vary from 0 to 2�. These angles
could represent the orientations of interacting arrows. The
interaction, which tends to align neighboring arrows,
results from the continuum free energy F given by

F �
K
2

Z
d2u�r��u��2; (1)

where the set of coordinates u � �x; y� label points on the
plane. Despite its simplicity, this model captures the main
properties of vortices in layers of superfluid 4He or thin
superconducting films when the field ��u� is identified
with the phase of the collective wave function. In addi-
tion, the elastic energy of Eq. (1) correctly describes
liquid crystalline phases for which the bond angle, ��u�,
has periodicity 2�

p with p � 3. For a solution of nemati-
gens (p � 2) and tilted molecules in a Langmuir film
(p � 1), two different elastic constants are necessary to
account for bend and splay deformations [5], but these are
renormalized to the same value at finite temperatures [6].
Besides its experimental significance, the XY model is the
cornerstone of our conceptual understanding of topologi-
cal defects, singular configurations of the field ��u�.
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Like particles, defects have charges and a character-
istic Coulomb-like interaction. The charge q, a multiple of
2�
p , can be defined by the amount � increases along a path
enclosing the defect’s core. The force between two defects
located at positions ui and uj is determined by the energy
stored in the � field, Eint � KqiqjU�ui;uj�, where the
interparticle potential U�ui;uj� is proportional to the
logarithm of the distance in the plane.

On a flat surface, thin layers of superfluids, supercon-
ductors, and liquid crystals can all be analyzed within the
framework of Eq. (1) [7]. However, there is a crucial
difference between, say, the phase of the superfluid order
parameter and the angle that describes the local orienta-
tion of liquid crystal molecules. The former transforms
like a scalar since the quantum mechanical phase does
not change when the system is rotated, while the latter
represents a vector aligned to the local direction of the
molecules. Thus, a common boundary condition for a
liquid crystal is for the director to be tangent to the
boundary of the substrate. By contrast, no such constraint
exists for a 4He film because its wave function is defined
in a different space from the one in which the superfluid is
confined. This distinction is crucial on a curved surface.
In the ground state of a 4He film, the phase ��u� is
constant throughout the surface and the corresponding
energy vanishes. The free energy F s to be minimized is a
scalar generalization of Eq. (1):

F s �
K
2

Z
d2u

���
g

p
g��@���u�@���u�: (2)

Here the set of coordinates u � �u1; u2� label points on
the surface while

���
g

p
is the determinant of the metric ten-

sor g��. On the other hand, a constant bond angle ��u� is
not the ground state of the liquid crystal because it is mea-
sured with respect to an arbitrary basis vector E��u� with
� � 1; 2. Indeed, it is not possible to make the directions
of the molecules parallel everywhere on a curved space;
the lowest energy state is attained by optimally distrib-
uting the unavoidable bend and splay of the vectors over
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FIG. 1. A corrugated substrate and its downward projection
on a flat plane. The shaded strip surrounding P is more
stretched than the one surrounding Q despite their projections
onto the plane having the same area. The energy stored in the
field will be lower if the core of the defect is located at Q rather
than P.
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the whole surface. The free energy functional F v to be
minimized is a vector generalization of Eq. (1) [8]:

F v�
K
2

Z
d2u

���
g

p
g���@���u�	
��u���@���u�	
��u��;

(3)

where 
��u�, the connection, compensates for the rota-
tion of the 2D basis vectors E��u� in the direction of u�.
Since the curl of 
��u� is equal to G�u� [9], the integrand
in Eq. (3) cannot be made to vanish on a surface with
nonzero Gaussian curvature [
��u� is a nonconservative
field and hence cannot be equal to @�� everywhere]. As
the substrate becomes more curved, the energy cost of
this geometric frustration can be lowered by generating
defects in the ground state even in the absence of topo-
logical constraints [10,11].

In this Letter, we introduce a novel coupling between a
defect and the varying curvature of the substrate which
originates in a conformal anomaly of the free energies of
Eqs. (2) and (3). This anomaly arises, even at zero tem-
perature, from imposing a constant cutoff, a, localized at
the core of each defect [12]. By contrast, finite tempera-
ture conformal anomalies [13] are generated by the pres-
ence of a short wavelength cutoff for the fluctuations in
��u� at every point on the surface. A physical conse-
quence of the anomalous coupling is that topological
defects in superfluids and superconductors interact with
the curvature in a radically different way from the case of
liquid crystal order [14].

For thin layers of superfluids and superconductors, we
prove that the geometric interaction Es�ui� is given by:

Es�ui� � 	
K
4�

q2i V�ui�; (4)

where ui and qi are, respectively, the position and topo-
logical charge of the defect. The geometric potential V�u�
satisfies a covariant version of Poisson’s equation where
the negative of the Gaussian curvature G�u� plays the role
of the charge density:

D�D�V�u� � G�u�: (5)

For an azimuthally symmetric surface such as the bump
represented in Fig. 1, we can explicitly obtain V�u�, as a
function of the radial distance from the top, by employing
a two-dimensional analogue of Gauss’ law [11]. The re-
sulting potential well V�r� vanishes at infinity and its
width and depth are given, respectively, by the linear
size of the bump and its aspect ratio squared. Equa-
tion (5) has an elegant geometrical interpretation if a set
of coordinates is chosen so that the metric tensor is cast in
the form g������exp�	2!�u�� [8]. The conformal fac-
tor, !�u� is controlled by the overall shape of the surface
and it satisfies the same Poisson Eq. (5) as the geometric
potential [8]. We therefore proceed with the identification
of V�u� with !�u� [15]. This observation will be the basis
of our proof of Eq. (4), which results in the novel pre-
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diction that a vortex in a superfluid or superconducting
film is repelled (attracted) by positive (negative) Gaussian
curvature irrespective of its charge and sign.

For liquid crystals, the geometric interaction Ev�ui�
contains an additional term discussed in previous inves-
tigations of hexatic membranes [17], which arises from
the geometric frustration of the vector field. This term,
linear in q, happens to contain the same function V�u� as
the conformal anomaly of Eq. (4). When both contribu-
tions are included, Ev�ui� acquires an unexpected depen-
dence on the charge of the defect:

Ev�ui� � Kqi

�
1	

qi
4�

�
V�ui�: (6)

The interpretation of V�u� as a geometric potential and
the linear dependence on q in the first term of Eq. (6) are
consistent with the general belief that a defect interacts
logarithmically with the Gaussian curvature, as an elec-
trostatic particle would with a background charge distri-
bution. However, Ev�ui� does not grow linearly with the
charge of the defect, as expected from the electrostatic
analogy. Instead, the geometric interaction peaks for a
defect of charge 2� and eventually becomes repulsive for
q greater than the critical charge qc � 4� [18].

The quadratic coupling has an intuitive explanation in
the case of azimuthally symmetric surfaces. Consider a
very thin superfluid film deposited on the surface illus-
trated in Fig. 1 with a vortex of charge q placed on top of
the bump. In order to calculate the energy stored in the
field, we only need to know that the superfluid phase ��u�
changes uniformly by q along a circumference of length
2�r centered on the defect. Inspection of Eq. (2) reveals
that the energy density of the field in the shaded strip at
distance r is proportional to �qr�

2, where r is the distance to
the singularity measured in the plane of projection (see
Fig. 1). By vertically stretching the surface, the amount of
area in the shaded strip is increased with respect to its
projection on the plane, while the energy density is un-
215301-2
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changed. As a result, the total energy stored in the field is
greater when a vortex sits on top of a bumpy surface than
when the same vortex is located at the center of a flat disk
of the same area. Hence, it is energetically favorable for
the vortex to migrate to the flat portions of the surface. In
this case, the vortex is far away from the bump so that the
total energy stored in the field does not differ much from
the flat plane result [19]. For less symmetric surfaces, the
resulting geometric interaction will depend on the shape
of the entire surface as embedded in the metric tensor.

The physical origin of the linear coupling between
defects and curvature in Eq. (6) is illustrated in Fig. 2
for a disclination of charge 2� centered on a bump. As the
curvature of the bump is increased, the bend or splay of
the director of the liquid crystal decreases and hence the
energy stored in the vector field is reduced. As a result,
this linear coupling causes positively (negatively)
charged defects to be attracted by positive (negative)
Gaussian curvature [17]. However, this mechanism com-
petes with the repulsive geometric interaction illustrated
in Fig. 1 that is at work also in the case of liquid crystal
order. We note that the linear coupling is absent for super-
fluids because, in Eq. (2), @���u� is not coupled to a
curvature dependent connection, 
��u�, as it is in Eq. (3).

The critical value qc � 4�, where the single defect
potential Ev�ui� changes sign, can be determined from
simple geometrical arguments. Consider an isolated dis-
clination of charge q on a hemispherical cup placed on a
flat plane. On account of azimuthal symmetry, the force
acting on the defect depends only on the net Gaussian
curvature enclosed by the circle on which it is placed, see
Fig. 3(a) [11]. This interaction is unchanged if we deform
the outer region of the plane and eventually compactify it
to form a sphere as illustrated in Fig. 3(b). In order to
satisfy topological constraints [20], we still need to place
a shadow defect of charge �4�	 q� at the south pole (the
only position outside the circle that does not destroy the
azimuthal symmetry of the initial problem). The
curvature-defect interaction on the hemisphere is thus
reduced to the well known defect-defect interaction on
the sphere [21]. The latter is proportional to q�4�	 q�
and so is the curvature-defect interaction on the deformed
plane of Fig. 3(a), in agreement with Eq. (6). This pro-
vides evidence that a disclination of charge greater than
4� will be repelled from regions of positive curvature.
FIG. 2. Disclinations of charge 2� located on top of bumps
with different aspect ratios. The amount of splay in the liquid
crystal director on the taller bump is reduced and hence the
energy density is lower.
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We now present a derivation of the coupling between
curvature and defects in helium and superconducting
films that employs the method of conformal mapping,
often adopted in electromagnetism and fluid mechanics
to simplify the boundary of complicated planar regions.
In this context, we use conformal mappings to relate the
complex task of finding the field energy on an arbitrarily
deformed target surface to an equivalent problem on a
homogeneous reference surface (see Fig. 4). A conformal
mapping has two equivalent defining properties: angles
map to equal angles, and very small figures map to figures
of nearly the same shape. One can always find a confor-
mal mapping from the target to the reference surface [8]
such that gT � e	2!�u�gR, where gT and gR are the metric
tensors on the target and reference surfaces, respectively.
The scaling factor e!�u� varies with the position u on the
target surface, so that larger figures are inhomogeneously
distorted when they are mapped from the target to the
reference surface. We choose the reference surfaces to be
undeformed and of the same topology as the target spaces
(e.g., gR � ��� for a corrugated plane). Defects on the
target surface are mapped onto a set of ‘‘image defects’’
on the reference surface.

The crucial property of the scalar free energy F s is its
invariance under the rescaling of the metric by the con-
formal factor [22]. However, the conformal symmetry of
F s is broken upon introducing a short distance cutoff a
that is necessary to prevent the energy from diverging in
the core of the defect. Because of the varying scaling
factor, the constant physical core radius a is stretched or
contracted when projected on the reference space by an
amount dependent on the position of the defect (see
Fig. 4). The radius of the image of the ith core is ai �
e!�ui�a. It is this conformal anomaly that is responsible
for generating the geometric interaction in Eq. (4). In fact,
the energy of the defects in the target space ET is equal to
the energy of a configuration of defects (on the reference
surface) whose core radii are position dependent. This
problem can be further transformed into the simpler
task of finding the energy ER for a set of interacting
defects with constant core radius a plus an effective
geometric potential that accounts for the variation of
the core size with position. This geometric potential can
be derived with the aid of Fig. 4. If ai is smaller (larger)
(a) (b)

FIG. 3. (a) An isolated disclination on a deformed plane feels
a force that depends only on the enclosed Gaussian curvature.
(b) The deformed plane is compactified to the sphere by placing
a shadow defect at the south pole.
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FIG. 4. Conformal mapping of the target surface T onto the
reference space R. The continuous disks on both surfaces
represent the ‘‘physical’’ cores of constant radius a. The dashed
lines represent the position-dependent images on R of the
defect cores on T with variable radii ai. Note that the energy
stored in the annuli comprised by the dashed and continuous
lines in R must be added or subtracted to ER to obtain ET .
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than a, the energies stored in the annular regions indi-
cated in Fig. 4 need to be added (subtracted) from ER to
obtain ET . To calculate this extra energy, we introduce a
set of polar coordinates (r, &) centered on the ith defect.
Near the defect of charge qi, the phase is given by � 

qi
2�& and the energy density is Kq2i

8�2r2
. Upon integrating it

over the annulus comprised between a and ai � e!�ui�a
(see Fig. 4), we obtain

ET 	 ER � 	K
XNd

i�1

q2i
4�

!�ui�; (7)

where Nd is the number of defects. The energy ER ac-
counts for defect-defect interactions since any potential
felt by a single defect would have to be constant because
all points are equivalent on the reference surface (unde-
formed sphere or plane). Recalling that !�u� � V�u�, we
recover the result of Eq. (4) with no dependence on the
microscopic physics because the core size a drops out in
Eq. (7) [16]. In the case of liquid crystal order, the con-
tribution of the anomaly is simply added to the term
linear in q as indicated in Eq. (6) [11].

Experiments that test our predictions can be realized
by coating a bump with a thin layer of superfluid helium
and rotating it around its axis of symmetry so that a
single vortex forms [23]. The competition between the
(repulsive) geometric interaction and the confining para-
bolic potential (generated by the rotation) would cause
the equilibrium position of the vortex to shift from the
center of the bump if its height exceeds a critical value.
The vortex line could be detected by trapping of electrons
on its core [24]. Other experiments may detect an inho-
mogeneous distribution of thermally induced defects re-
sulting from the combined effect of the anomalous
coupling and the dependence of their Coulomb-like in-
teraction on the varying curvature.

We have demonstrated that the interaction between
defects and curvature in 2D XY-like models depends
crucially on the nature of the underlying order parameter
and we have shown how to explicitly derive the resulting
geometric force from the shape of the surface.
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