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The nonlinear evolution of the thermal Weibel instability is studied by using three-dimensional
particle-in-cell simulations. After a fast saturation due to a reduction in the temperature anisotropy, the
instability evolves to a quasistationary state which includes a single mode long wavelength helical
magnetic field and a finite degree of temperature anisotropy. The nonlinear stability of this state is
explained by periodic variations of the temperature anisotropy axis. At long time scales the magnetic
field, wave number, and temperature anisotropy slowly evolve to the decreasing magnitudes.
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The Weibel instability [1–3] occurs in many different
plasma systems including fusion plasmas, both magnetic
and inertial confinement, space plasmas, and in a new
class of engineered plasmas which will soon be created by
high intensity free electron x-ray laser pulses. The Weibel
instability has attracted a lot of interest because it can
generate a quasistationary magnetic field in a plasma [4–
8]. The Weibel instability can be driven by electromag-
netic radiation, electron beams, or temperature anisot-
ropy. Numerous studies of Weibel instability have been
recently conducted in short pulse laser produced plasmas
(cf. Refs. [9,10] and references therein) and in the astro-
physical plasmas (cf., e.g., [11]). The Weibel instability
also plays an important role in the isotropization of
electron temperature in plasmas created by tunnel ion-
ization with short CO2 laser pulses [12]. Similarly, photo-
ionization of gaseous targets by coherent x-ray pulses, as
is planned on the Tesla Test Facility [13], will allow the
engineering of plasma ionization, density, and the initial
parallel and transverse electron temperatures for which
the Weibel instability would be important.

In this Letter we present numerical and theoretical
descriptions of the thermal Weibel instability [1–3]
driven by an anisotropy in the electron temperature. The
term thermal Weibel instability is used here to differ-
entiate between the variety of beamlike distribution
functions (cf. Refs. [4,8–10]) and our classical case of a
temperature anisotropy (cf. Refs. [1–3,12]). Our study is
based on three-dimensional (3D) particle-in-cell simula-
tions. The physical model involves an unmagnetized
background plasma with a two temperature Maxwellian
electron distribution function. Rarefied plasmas often
exist in such a nonequilibrium state in the laboratory or
in space until collisions or an instability relax the system
to a state with an isotropic electron distribution. The
nonlinear evolution of the instability for an anisotropic
temperature has been studied analytically in Refs. [14–
18] and by using numerical simulations in Refs. [19–24].
Different models have been employed in these studies,
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including a fluid approach called vortex electron aniso-
tropic hydrodynamics (VEAH) [14,25], particle-in-cell
(PIC) simulations [19,20], and Vlasov simulations [22].
The two-dimensional (2D) nonlinear regime of the
Weibel instability has been studied numerically in
Refs. [19,24]. Here we present PIC simulations using a
fully electromagnetic, relativistic, massively parallel PIC
code [26] which is applied for the first time to model the
3D evolution of a thermal Weibel instability driven by an
anisotropy in the electron temperature, thus extending the
previous studies of Ref. [19] to a 3D geometry.

Our PIC code solves Maxwell equations by using the
Yee scheme and the particle equations of motion by a
relativistic modification of the Boris scheme. The chosen
particle shape factor is characterized by a well compen-
sated self-force and slow self-heating [27]. This is an
important advancement in reducing numerical self-
heating. Our algorithm ensures exact charge conserva-
tion. Ions are considered immobile. Initially, at t � 0, the
electrons have a bi-Maxwellian velocity distribution func-
tion f/ exp��mev2

x=2T?0�mev2
y=2T?0�mev2

z=2Tk0�

and are uniformly redistributed over a computational
box. The number of grid cells used was 64� 64� 256
and the number of quasiparticles was 6:3� 107. Periodic
boundary conditions are used for the electrons and for the
fields. Simulations have been performed on the University
of Alberta parallel computer. For a typical run, the size
of the simulation box is Lx � Ly � Lz � 15� 15�
60�c=!pe�, where c is the speed of light and !pe is the
electron plasma frequency. Some of the control runs have
Lz 4 times smaller. Initial electron temperatures are Tk0 �

0:64 keV and T?0 � 16 keV. This corresponds to a tem-
perature anisotropy P � T?0=Tk0 � 1 � 24.

Figure 1 shows the evolution of the space averaged
magnetic field (right axis) and thermal energies (left
axis). The notation h:::i is used to indicate spatial averag-
ing. Initially the magnetic field energy grows exponen-
tially. The growth rate ��k� in Fig. 1 is in good agreement
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FIG. 1. Time evolution of the spatially averaged thermal
energies hT?i=T?0 (1), hTki=T?0 (2), and magnetic field energy
WB � hB2i=8�nT?0 (3). The inset shows the initial exponential
growth of the magnetic field energy (3) and analytical predic-
tion from the linear kinetic theory (4). The total energy (5)
demonstrates the accuracy of energy conservation in 3D simu-
lation. The time unit is the plasma wave period 2�=!pe.
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with the solution to the linear kinetic dispersion relation
for a plasma with an anisotropic temperature (within a
few percent). Along the z direction, where the growth rate
reaches maximum values, ��k� can be well approximated
(with an accuracy of 10% to 15%) by the expression
obtained from the VEAH theory [14]:

��k� � k
�
Tk0

me

P� c2k2=!2
pe

1� c2k2=!2
pe

�
1=2

: (1)

The wave number domain of unstable modes is 0< k<
�!pe=c�P and the characteristic wave number of the most
unstable perturbation is k ’ 2!pe=c.

After experiencing exponential growth, the magnetic
field saturates and the instability enters the nonlinear
regime (t  20). The nonlinear evolution comprises the
transient phase (20 � t � 130), when the magnetic field
energy is transferred to the long wavelength part of the
spectrum, and the quasistationary regime (t > 130),
which is characterized by a reduced value of the tem-
perature anisotropy, P ’ 2, a single mode magnetic field
perturbation, and the slow decay of B and P. The initially
small longitudinal thermal energy, Tk0 � 0:04T?0, in-
creases in time and saturates at hTki ’ �1=4�T?0 ’
�1=3�hT?i. The high transversal temperature T? de-
creases to approximately 0.75 of its original value. The
quasistationary level of the magnetic field energy is quite
small, hB2=8�nT?0i � 2� 10�2 (n is the electron den-
sity), which is lower than energy levels found previously
in 1D and 2D simulations [19,22–24].
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The first saturation of the Weibel instability is caused
by the dramatic reduction in the temperature anisotropy
(cf. Refs. [19,22–24]). A small fraction of the initial
thermal energy is also transferred into the magnetic field
perturbation. By decreasing the anisotropy one first sta-
bilizes the growth of short wavelength perturbations.
Thus in the nonlinear regime the spectrum of fluctuations
is dominated by long wavelength perturbations. At late
times the fluctuation spectrum peaks at the wave number
corresponding to the maximum growth rate (1) for the
temperature anisotropy P. For P ’ 2 this approximately
corresponds to k ’ 0:85!pe=c. Note that the minimum
wave number (kmin � 2�=Lz) which can be accommo-
dated by the simulation box size, is 0:14!pe=c.

The electromagnetic energy is accumulated mainly in
the magnetic field perturbations: hE2i � �T?=mec2��
hB2i � hB2i. This estimate agrees well with our simula-
tion results, where hE2i=hB2i & 10�2. In the linear re-
gime, a Weibel instability excites pure electromagnetic
modes with Ez � 0; and �n � 0 where �n is the electron
density perturbation. Electrostatic field and electron den-
sity perturbations develop as a nonlinear effect [14],
�n� B2=8�mc2, reaching negligibly small levels. In
practice, significantly higher density variations appear
in PIC simulations due to discreteness effects. With our
improved numerical algorithm we have kept the level of
these numerical fluctuations below 6%.

Figure 2 shows the 3D evolution of the magnetic field:
the spatial vector structure of the magnetic field is shown
in the upper panels (a)–(c) and the Fourier spectrum of
the magnetic field energy density is shown in the lower
panels (d)–(f). For an initial temperature anisotropy, P �
24, modes around the twentieth spatial harmonic are the
most unstable. This is in agreement with the linear theory
of theWeibel instability. Because of the strong anisotropy,
the instability develops over a wide cone of angles ��=2.
The wide k spectrum at the very beginning of the Weibel
instability is shown in Fig. 2(d). There are 26 unstable
modes in the z direction. The initially wide cone of the
unstable k vectors converges with time to a much nar-
rower distribution with the concentration of the magnetic
field energy in the z direction about the most unstable
modes [Fig. 2(e)]. Finally, longer scale modes appear and
the spectrum evolves to a one-mode regime featuring a
helical magnetic field structure in which wave number
decreases slowly in time from k ’ 0:8!pe=c (t � 130) to
k ’ 0:5!pe=c (t � 220). The final k vector corresponds to
the 4th–5th spatial harmonic for our simulation box
[Fig. 2(f)]. Such an inverse cascade has been observed
before in two-dimensional simulations [19].

The magnetic field evolution (Fig. 2) illustrates plasma
self-organization leading to the formation of a regular
helical structure from the initially chaotic plasma state.
This is also shown by the kz spectrum of the magnetic
field energy in Fig. 4, which displays energy transfer
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FIG. 2 (color). Spatial variations of
the magnetic field and the k spectrum
of magnetic field energy density (mi �
kLi=2�, Li � 15c=!pe, i � x; y; z) at
different time moments, t � 3 [(a),(d)],
t � 10 [(b),(e)], and t � 121 [(c),(f)].
Magnetic field [in units of mec!pe=
�2�e�] and magnetic field energy spec-
tral density are normalized to their
maximum absolute values: 0.063 (a),
0.19 (b), 0.34 (c), 3:5� 10�6 (d), 5:2�
10�3 (e), and 0.052 (f). The top panels
(a)–(c) show magnetic field lines cross-
ing the z axis at the center of the com-
putational box.
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FIG. 3 (color). The electron phase space for z ’ 2:2c=!pe at
different times.
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across the spectrum from the initial broad k-vector dis-
tribution (curve 1) to the narrow spectrum of long
wavelength perturbations (curve 4) at the late time. The
wave number, of the magnetic perturbations in Fig. 4,
decreases as the temperature anisotropy P decreases.
This is consistent with the shrinking range of linearly
unstable modes as P ! 0. However, in the final nonlinear
state corresponding to P � 2 the plasma is stable con-
trary to linear theory predictions. The final formation
of the circularly polarized force-free magnetic field
fB0 coskz; B0 sinkz; 0g is essentially a three-dimensional
effect and therefore could not be seen in previous studies
of thermal Weibel instability. Additional simulations have
confirmed that our model has no bias with regard to the
sign of the helicity of the final state; this depends entirely
on the choice of initial conditions. The initial bi-
Maxwellian electron distribution function has a pancake-
like form with the anisotropy axis along the z direction
(cf. Fig. 3 at t � 0). We define the anisotropy direction by
the unit vector n such that the temperature tensor T has a
diagonal form in the Cartesian reference frame defined
by n. Thus, T � Tknn� T?�I� nn�, where n points
along the z direction at the initial time. The spatial and
temporal evolution of the pressure anisotropy such as the
rotation of the vector n are responsible for transition to
the quasistationary nonlinear regime of the Weibel insta-
bility. At the time of first saturation of the magnetic field
energy (curve three of Fig. 1 for t * 15), we observe a
rotation of the vector n. This is shown in Fig. 3, where at
t � 15, the anisotropy axis is rotated by 27� with respect
to the initial direction along z axes. Such an evolution of n
is consistent with the predictions of the reduced hydro-
dynamical model [28] that is derived from the VEAH
equations. The analytical solution of Ref. [28] involves
nonlinear periodic oscillations of the Fourier component
of the magnetic field vector and the anisotropy axis n.
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When the period of these oscillations is comparable with
the time of linear growth, the nonlinear evolution effec-
tively dephases and saturates the instability. The one-
mode solution of Ref. [28] describes a helical magnetic
field with relatively small energy, hB2i=8�nT?0 � 1.
This is also observed in the asymptotic state of our
215004-3



FIG. 4. Spectral density of the magnetic field energy as a
function of kz at different times: t � 15 (1), t � 50 (2), t � 102
(3), and t � 210 (4) (kmin � 2�!pe=60c).
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simulations. The reduced model solution [28] and the full
kinetic simulations produce similar scaling of the mag-
netic field amplitude B / k

�������������������
P? � Pk

p
. Thus the helical

magnetic field structure is a kind of attractor leading to
the self-organizing plasma. However, in the full 3D PIC
simulations, the plasma evolves towards this asymptotic
state in a manner far more complicated than the simple
rotation of vector n. For example, at t * 21 (cf. Fig. 3),
the diagonalization of the pressure tensor displays three
different diagonal elements, thus introducing another axis
of the anisotropy. In particular, P? ! fP1; P2g, where P1

and P2 are approximately 20% larger and smaller, respec-
tively, than the averaged P? value. The complex rotation
of particles in phase space occurs together with collision-
less damping of electromagnetic perturbations [19,21]
and thereby contributing to the plasma quasistationary
state at t > 130. Clearly on such a long time scale, there
are effects which are not included in our model such as
the ion response and particle collisions which will also
affect the evolution of Weibel instability.

In conclusion, we have performed 3D PIC simulations
describing the nonlinear evolution of the thermal Weibel
instability driven by an initial anisotropy in electron
temperature. The initially broad spectrum of magnetic
field turbulence evolves towards a quasistationary single
mode helical structure. This scenario is in qualitative
agreement with results of an analytical nonlinear model
which is based on the VEAH equations.
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