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Liquid Rope Coiling on a Solid Surface
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We present an experimental study of the coiling instability of a liquid “rope” falling on a solid
surface. Coiling can occur in three different regimes—viscous, gravitational, or inertial—depending
on the fluid viscosity and density, the fall height, and the flow rate. The competition among the different
forces causes the coiling frequency first to decrease and subsequently to increase with increasing height.
We also observe an oscillation between two coiling states in the gravitational-to-inertial transitional
range, reflecting the multivaluedness of the dependence of coiling frequency on fall height. The data
can be rescaled in a universal way, and agree very well with numerically predicted coiling frequencies.
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Honey poured from a sufficient height approaches a
piece of toast in the form of a rotating coil or ‘““cork-
screw”” (Fig. 1). This phenomenon has been called ‘““liquid
rope coiling” [1], by analogy to the coiling of an elastic
rope falling onto a surface. The latter phenomenon can be
explained [2] as the bending of an elastic rod subject to
gravitational and inertial forces.“Liquid ropes” are more
difficult to understand because they deform simulta-
neously by bending, twisting, and stretching. The role of
stretching [visible as the tapering of a falling stream of
honey, Fig. 1(a)] is particularly important because it
causes large changes in the rope’s radius, the most im-
portant parameter controlling its resistance to
deformation.

Liquid rope coiling has been studied extensively in the
laboratory [1,3-9], and the conditions of its onset are well
understood theoretically [10,11]. The first successful ex-
planation of supercritical coiling was the Mahadevan
et al. demonstration [12] that the dynamics of the high-
frequency limit involve a balance between viscous forces
and inertia. However, this is not the whole story. Recently,
Ribe [13] used a numerical model for a thin viscous rope
to demonstrate the existence of three distinct coiling
regimes (viscous, gravitational, and inertial) depending
on the fluid properties, the fall height, and the flow rate.
These regimes are defined by the relative magnitudes of
the viscous (Fy), gravitational (Fs), and inertial (F)
forces per unit of rope length in the helical portion of
the rope near the plate (the “coil”’; Fig. 1(c)). Viscous
coiling occurs when both gravity and inertia are negli-
gible (Fg, F; < Fy). Coiling in this regime is driven
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entirely by the injection of the fluid, much like toothpaste
squeezed from a tube. Gravitational coiling occurs when
inertia is negligible and the viscous forces are balanced by
gravity (Fg = Fy > F;). Finally, inertial coiling occurs
when gravity is negligible and viscous forces are balanced
by inertia (F; = Fy > F;). To within multiplicative
constants, the coiling frequencies in these three regimes
are [12,13]
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FIG. 1. Examples of liquid rope coiling. (a) Coiling of honey
(viscosity v = 60 cm?s~!) falling a distance H = 3.4 cm.
(b) Coiling of silicone oil with » = 1000 cm?s™!, injected
from an orifice (top of image) of radius ay = 0.034 cm at a
volumetric rate Q = 0.0044 cm?s~!. Effective fall height H =
0.36 cm. (c) Coiling of silicone oil with v = 125 cm?s™ !, a, =
0.1 cm, Q = 0.213 cm?®s™!, and H = 10 cm. The radius of the
portion of the rope shown is 0.04 cm.
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where Q is the volumetric flow rate, H is the fall height, v
is the kinematic viscosity, g is the gravitational accelera-
tion, and a, is the radius of the rope in the coil. Surface
tension changes the coiling frequencies by no more than a
few percent [13], and therefore does not appear in the
above expressions.

Here we report experiments covering the three re-
gimes, with measurements of all the parameters neces-
sary for a detailed comparison with the theory. We find
that, as the fall height increases, the coiling frequency
decreases and subsequently increases again, and we ob-
serve an oscillation between two coiling states with dif-
ferent frequencies in the gravitational-to-inertial
transitional range. Finally, we show that all of the results
can de rescaled in a universal way that allows us to predict
the frequency of coiling of, e.g., honey on toast.

Experimental procedure—In our experiments, silicone
oil with density p = 0.97 gmcm ™3, surface tension coef-
ficient y =22 dynecm™!, and different viscosities was
injected at a constant flow rate from an orifice of radius a,
and subsequently fell onto a metal plate. We used two
different experimental setups to access the three coiling
regimes. In the first setup, designed to study the transition
from viscous to gravitational coiling, a syringe pump
driven by a step motor was used to inject oil with vis-
cosity » = 1000 cm?s~! from an orifice of radius ay =
0.034 cm while the fall height H was varied. One series of
experiments was performed with a flow rate Q =
0.0038 cm®s™! and H = 0.22-1.9 c¢m, and another with
Q = 0.0044 cm’®s~ ! and H = 0.19-0.92 cm. In all cases,
H was measured from the orifice to the point of contact of
the rope with the heap of fluid below [Fig. 1(b)]. The
values of v, Q, and H were chosen such that the rope
was neither thinned significantly by gravity nor (with a
few exceptions) thickened significantly by compression
against the plate. The flow rate was measured from the
syringe with an accuracy of 10™* mls™!. A charge-
coupled device camera operating at 25 frames/s was
used to take movies and measure the coiling frequency
by frame counting. The accuracy of the measurements of
H and a; was about 0.2 and 0.02 mm, respectively.

In the second setup, designed to study the transition
from gravitational to inertial coiling, oil with viscosity
v =300 cm?s~! fell freely from a hole of radius a, =
0.25 cm in the bottom of a reservoir maintained at con-
stant head. Three series of experiments were performed
with O = 0.085, 0.094, and 0.104 cm3s™"', and the total
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range of H was 2.0—-49.4 cm. The coiling frequency was
measured by filming with a high speed camera (125 to
1000 framess™!) and counting frames. The fall height,
defined as above, was measured with an accuracy of
I mm. The radius a; of the rope just above the coil was
measured using a high-resolution digital camera. The
flow rate was measured to within 1% by performing the
experiment on a balance and recording the changing
weight.

Frequency versus height: viscous-gravitational transi-
tion.—Figure 2(a) shows the angular coiling frequency ()
(circles) as a function of height measured using the first
setup with Q = 0.0038 cm? s~ !. The frequency decreases
strongly as a function of height for H < 0.8 cm, and then
increases slightly thereafter. The behavior for H < 0.8 cm
is in qualitative agreement with the scaling law (1a) for
viscous coiling, which predicts ) ~ H~!. In this regime,
the coiling frequency is independent of viscosity and
depends only on the geometry and the flow rate —even
though the fluid’s high viscosity is what makes coiling
possible in the first place (water does not coil). The

H (cm)
0.2 0.5 1 2
10
—~ 9 1
\D 8 -
@ S
C 6
5,
4
>
2_
G
G
1_

FIG. 2. Transition from viscous to gravitational coiling.
(a) Open circles: angular coiling frequency measured experi-
mentally for » = 1000 cm?s™!, @y =0.034cm, and Q =
0.0038 cm?®s™!. Error bars on () and H are smaller than the
diameter of the circles. Solid line: coiling frequency versus
height predicted numerically for the same parameters [13].
(b) Same as (a), but rescaled using the scales ), and Q.
Portions of the solid curve with slopes zero (left) and unity
(right) correspond to viscous and gravitational coiling, respec-
tively. Squares are for additional experiments with Q =
0.0044 cm?®s™!. Error bars primarily reflect uncertainty in
estimation of aj.
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physical reason for this rather surprising behavior is that
the velocity in the rope is determined purely kinemati-
cally by the imposed injection rate. This ceases to be the
case for fall heights H > 0.8 cm for which the influence
of gravity becomes significant, as we demonstrate below.

To analyze our experiments more precisely, we com-
pare our data with the frequency-height curve predicted
numerically for the same parameters, including surface
tension for completeness [Fig. 2(a)]. The numerical pre-
dictions reproduce very well the trend of the observations,
although the latter are 15%-20% too low on average,
probably due to the difficulty of determining the effective
value of H. At low heights the numerical model predicts a
frequency that increases rapidly with height. This corre-
sponds to coiling states in which the rope is strongly
compressed against the plate, and which were discarded
in the experiments.

Frequency versus height: gravitational-inertial transi-
tion— For larger fall heights, both gravitational and
inertial forces are important. Figure 3(a) shows the fre-
quency versus height curve measured using the second
setup with Q = 0.094 cm®s~!. As we will see below, the
low frequencies correspond to gravitational coiling, and
the high frequencies to inertial coiling. These data show
two remarkable features. First, and contrary to what
happens in the viscous regime, the coiling frequency
increases with increasing height. Second, there appears
to be a discontinuous jump in the frequency at H = 7 cm.

The increase of frequency with height in the inertial
regime can be understood qualitatively as follows.

From (lc), Q ~ af10/3 in the inertial regime. The
(a priori unknown) radius a; is in turn controlled by
the amount of gravitational thinning that occurs in the
vertical portion (“tail”’) of the falling rope, above the
helical coil. Now the dominant forces in the coil and in
the tail need not be the same: indeed, in many of our
inertial coiling experiments, inertia is important in the
coil but relatively minor in the tail, where gravity is
balanced by viscous resistance to stretching. This implies
3v(AU’) ~ gA, where 3v is the extensional (Trouton)
viscosity [14], A = 7a® is the area of the rope’s cross
section, U is the axial velocity, and primes denote differ-
entiation with respect to arclength along the tail. For
strong stretching (a; < ag) occurring over a distance
H, the force balance implies

a, ~ (Qv/g)V?H . (2)

Substitution of (2) into (lc) gives Q « H'93 roughly
consistent with the slope (=2.5) of the experimental
data in the range H = 9-15 cm [Fig. 3(a)]. To do better,
we need to solve the full numerical problem including all
viscous, gravitational, and inertial forces. The result
[Fig. 3(a), solid line] is in remarkably close agreement
with the observations, with no adjustable parameters.
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FIG. 3. Transition from gravitational to inertial coiling.
(a) Circles: angular coiling frequency measured experi-
mentally for » =300cm?s™!, g, =025cm, and Q=
0.094 cm®s™!. Error bars on () and H are smaller than the
diameter of the circles. Solid line: coiling frequency versus
height predicted numerically for the same parameters [13].
(b) Same as (a), but rescaled using the scales Q; and ().
Portions of the solid curve with slopes zero and unity corre-
spond to gravitational and inertial coiling, respectively. Results
are also shown for experiments with Q = 0.085 cm’s~!
(squares) and 0.104 cm?s™! (triangles).

A striking feature of the numerical frequency-height
curve is its multivaluedness, which coincides perfectly
with the jump in frequency observed in the experiments.
These observations suggest that different coiling states
with distinct frequencies may exist at the same height. To
investigate this surprising behavior further, we fixed H =
7 cm and measured the frequency as a function of time by
counting the number of video frames elapsed during each
full turn (Fig. 4). We observed a clear oscillation between
two frequencies that match closely the frequencies of the
lower and upper branches of the numerical solutions
(Fig. 4, dashed lines). The transition between the two
states appears to be triggered by small changes in the
height of the heap of liquid below the coils. We did not
observe the state with intermediate frequency predicted
by the numerics [between reference points A and B in
Fig. 3(a)], which is probably unstable.

214502-3



week ending
VOLUME 93, NUMBER 21 PHYSICAL REVIEW LETTERS 19 NOVEMBER 2004
40 n 1 1 n 1 n 1 5 1 1 1
4 |
09, oo
ol SRS 5 . |
i
—~ 2 F
G o O
(@] (o]
P Oo _______ o ng(b_o:b_ 6% T ! 1 10 100 1000 10000 100000
g H3v?
FIG. 5. Function K in (3). K(x — o) ~ (2x)1/*/(\/37).
10 T T T T
0 2 4 6 8 10
time (s)

FIG. 4. Coiling frequency versus time for an experiment with
v =300cm?s™ !, gy =0.25cm, Q = 0.094 cm?®s™!, and H =
7.0 cm. The dashed lines show the lowest and highest of the
three coexisting frequencies predicted by the numerical solu-
tions for the same parameters.

Universal rescaling—Consider first the experiments
performed using setup 1, which exhibit a transition
from viscous to gravitational coiling. We anticipate that
the control parameter for this transition will be the ratio
of the characteristic frequencies {); and {1y of the two
modes, defined by (1a) and (1b). Accordingly, a log-log
plot of Q/Qy versus Q5/Qy = H(g/vQ)"* should de-
fine a universal curve, where viscous and gravitational
coiling are represented by segments of slope zero and
unity, respectively. To test this, we compare all of the
experimental data obtained using setup 1 with the theo-
retically predicted universal curve in Fig. 2(b). Segments
of slope zero and unity are clearly defined by the rescaled
measurements, although the latter are again 15%—-20%
lower than the numerical predictions.

By the same reasoning, there should also exist a uni-
versal curve describing the transition from gravitational
to inertial coiling as H increases. Figure 3(b) shows a log-
log plot of Q/Q versus ;/€) for our experimental
data (symbols), together with the numerical prediction
(solid line). The agreement is very good, especially in
the transition regime between gravitational coiling (con-
stant 1/Q) and inertial coiling (1/Qg o« Q;/Q%).
Evidently the gravitational-inertial transition, such as
the viscous-gravitational one, can be rescaled in such a
way that the behavior is universal.

We conclude by using our results to predict the fre-
quency of inertial coiling of honey on toast. A complete
scaling law for the frequency in terms of the known
experimental parameters is obtained by combining the
inertial coiling law ) =~ 0.18(); [Fig. 3(b)] with a nu-
merical solution for a; valid when a; < ay [13]. This
yields
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H 10/3
Q=0.0135g5/3Q1/3V2[ } )]

K(gH?/v?)

where the function K is shown in Fig. 5. To test this law,
we measured the coiling frequency of honey (v =
350 cm?s™!) falling a distance H = 7 cm at a rate Q =
0.08 cm®*s™! onto a rigid surface. The measured fre-
quency was = 16 s~!, while that predicted by (3) is
15.8 s 1.
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