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Based on the invariance principle of differential equations a simple, systematic, and rigorous
feedback scheme with the variable feedback strength is proposed to stabilize nonlinearly finite-
dimensional chaotic systems without any prior analytical knowledge of the systems. Especially the
method may be used to control near-nonhyperbolic chaotic systems, which, although arising naturally
from models in astrophysics to those for neurobiology, all Ott-Grebogi-York type methods will fail to
stabilize. The technique is successfully used for the famous Hindmarsh-Rose neuron model, the
FitzHugh-Rinzel neuron model, and the Rossler hyperchaos system, respectively.
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Since Ott, Grebogi, and Yorke (OGY) [1] proposed an
effective method to control chaos, all kinds of variations
based on this method have been given [2], and lots of
successful experiments have been reported. For the sim-
plicity, here we call the OGY method and its variations as
the OGY-type methods. Recall the idea of the OGY-type
methods, the following three steps are necessary to im-
prove its performance: (i) To specify and locate an un-
stable periodic orbit embedded in the chaotic attractor,
say a fixed point x;; (ii) To approximate linearly the
system in a small neighborhood of x; by reconstructing
statistically the corresponding linearized matrix J; (iii)
To control (or stabilize) the chaotic orbits entering the
neighborhood to x; with aid of the approximated linear
dynamics. The first step can be realized by the method of
close returns from experimental data, and the third step is
entirely within the field of linear control theory such as
“the pole placement technique.” Although the second
step, including the calculation of eigenvalues and eigen-
vectors of the corresponding linearized matrix J, has
been solved by the least-squares fit, this problem is re-
lated to how chaos affects the linear estimation of the
dynamics in the small neighborhood of x;. Especially,
when the system is nonhyperbolic and any prior analyti-
cal knowledge of dynamics is not available, such linea-
rization will be problematic due to the nonlinearity. It is
well known that many of the chaotic phenomena seen in
systems occurring in practice are nonhyperbolic. On the
other hand, there are numerous successful reports of OGY
control in numerical experiments. This matter is slightly
puzzling. In [3], the author investigated carefully this
problem, and found that there are two possible reasons
resulting in such contradiction. One reason is that the
least-squares fit used in the process of reconstructing
the attractor from time series is ill defined due to the
nonhyperbolicity of systems. The other is that there are
large relative errors in the process of solving numerically
eigenvalues of a matrix as one of its eigenvalues, A = 0,
which is a well-known fact in the matrix computations
[4]. Therefore in those successful numerical experiments
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the nonhyperbolicity of system may be destroyed before
obtaining the information for attempting the OGY con-
trol by experimental time series. Although the nonhyper-
bolicity of the chaotic attractor does not automatically
mean the nonhyperbolicity of the unstable periodic orbits
embedded in it, the near nonhyperbolicity must exist and
affect the performance of the OGY control when the
system itself is near nonhyperbolic; see the models dis-
cussed below. More interestingly, the report in [5], on the
failure of chaos control in a parametrically excited pen-
dulum whose excitation mechanism is not perfect, throws
highly the light to this viewpoint (to the best of my
knowledge, this is the first report on failure of the OGY
control in the concrete physical experiments).

This Letter is motivated by the limitation of the OGY-
type controllers as what referred above. Especially we
address the control problem on the near-nonhyperbolic
chaotic systems in the form of

i =g,(uv) v = rg,(uv) ey

where ¥ € R™, v € R™, and 0 <r < 1. The systems
have simultaneously n; dramatic components u# and n,
slow variables v, which arise naturally from many scien-
tific disciplines, and range from models in astrophysics to
those for biological cells [6]. In particular, such systems
and their discrete versions are widely used to model
bursting, spiking, and chaotic phenomena in neuro-
science; see [7] and references therein. More interestingly,
just as was referred in [1], due to multipurpose flexibility
of higher life form, chaos may be a necessary ingredient
in their regulation by the brain. In the other side, based on
a fact of cognitive science the author speculated in [3]
that such chaotic ingredient is probably in the form of (1),
where the slow variables represent a “‘container’ or ‘“‘re-
corder” storing the acquired knowledge. Note that all
OGY-type methods will fail to control such chaotic dy-
namics because system (1) with sufficiently small r is
near-nonhyperbolic, ie., the corresponding linearized
matrix J at any points admits one eigenvalue A = 0. For
the discrete case this indicates that the linearized matrix
J admits one eigenvalue A = 1. However, all OGY-type
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controllers contain the term (J — I)~! (see [2], where [ is
the identity matrix), which is near singular in this case, so
all OGY-type methods are infeasible for system (1) with
0 <r < 1. This is just the reason for failure of chaos
control reported in [5], meanwhile this may be also a
reason why it is so difficult to physically control chaos in
the brain by the OGY method [8]. In addition, this
mechanism is beneficial to explain why stabilization of
an inverted triple pendulum is very troublesome as out-of
planar motions become very substantial, which was firstly
reported in [9].

In this Letter, based on the invariance principle of
differential equations [10], a simple and rigorous feed-
back scheme with the variable feedback strength is pro-
posed to stabilize nonlinearly finite-dimensional chaotic
and hyperchaotic systems without any prior analytical
knowledge of the systems. Especially, this simple tech-
nique can be easily applied to stabilize near-non-
hyperbolic chaotic systems in the form of (1). This
Letter is mainly focused on the continuous systems, but
the proposed method can be generalized to the discrete
version by the invariance principle of difference
equations.

Let a chaotic system be given as

X = f(x), 2

where x = (xl’ X2, "t xn) € R", f(x) = (fl(x)r fZ(x)r
<o, fa(x):R"— R" is a nonlinear vector function.
Without loss of the generality we let ) C R”" be a chaotic
bounded set of (1) which is globally attractive, and sup-
pose that x = 0 is a fixed point embedded in ). For the
vector function f(x), we give a general assumption.

For any x = (x|, x5, " * *, x,) € Q, there exists a con-
stant 1 > 0 satisfying

| fi(x) |[= Imax; | x; |, i=12"---, n 3)

Note this condition is very loose, for example, the
condition (3) holds as long as (df;/0x)(i, )=
1,2, - -+, n) are bounded. Therefore the class of systems
in the form of (2) and (3) include almost all well-known
finite-dimensional chaotic and hyperchaotic systems. To
stabilize the chaotic orbits in (2) to the fixed point x = 0,
we consider the feedback control

X =f(x)+ ex, “4)
where ex = (e,x;, €)Xy, * - *, €,x,,). Instead of the usual
linear feedback, the feedback strength €=
(€}, €, * -+, €,) here will be duly adapted according to

the following update law:

€; = —yixi, i=12-mn )

where y; >0,i = 1,2, - - -, n, are arbitrary constants. For
the system consisting of (4) and (5), we introduce the
following function:
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where L is a constant bigger than nl, i.e., L > nl. By
differentiating the function V along the trajectories of
system (4) and (5), we obtain

V= Zx,»(f,-(x) +€;x;)— Z(ei +L)x?<(nl—L) lez
= = =
=0,

where we have assumed x € () (without loss of the gen-
erality as () is globally attractive), and used the condition
(3). It is obvious that V = 0 if and only if x = 0, namely,
the set E={(x,e) ER?: x=0,e = ¢, € R"} is the
largest invariant set contained in V = 0 for systems (4)
and (5). Then according to the well-known invariance
principle of differential equations [10], starting with ar-
bitrary initial values of systems (4) and (5), the orbit
converges asymptotically to the set E, i.e., x — 0 and € —
€y as t — 0.

Obviously when the chaotic system (2) is stabilized to
x = 0 the variable feedback strength € will be automati-
cally adapted to a suitable strength €, depending on the
initial values. This is significantly different from the
usual linear feedback, and the converged strength must
be of the lower order than those used in the constant gain
schemes. Although theoretically the converged strength
may be very big so that it may give rise to its own
dynamics, the flexibility of the strength in the proposed
scheme can overcome this limitation once such a case
arises. For example, suppose that the feedback strength is
restricted not to exceed a critical value, say k. In the
present control procedure, once the variable strength €
exceeds k at time t = f;, we may choose the values of
variables at this time as initial values and repeat the same
control by resetting the initial strength €(0) = 0. Namely,
one may achieve the stabilization within the restricted
feedback strength due to the global stability of the present
scheme. This idea is slightly similar to that of the OGY
control [1], i.e., small parameter control. But there exists a
certain difference between them, for example, in the
OGY control the controller waits passively for the emer-
gence of chaotic orbits. In the other side, in the present
adaptive-feedback scheme the small converged strength
may be obtained by adjusting suitably the parameter y.
Moreover, we note that in the present scheme it is not
necessary for some particular models to use all the var-
iables of system as feedback signals. For example, if | ¢; |
=| e; | one may set €; = 0 which implies that it does not
need to add the feedback control to the variable x; at all,
and this case exists in general due to the nonhyperbolicity
of chaotic attractor, see the following examples.
Obviously this simple, systematic and rigorous method
may stabilize nonlinearly almost all finite-dimensional
chaotic systems [including those in the form of (1)] with-
out any a priori analytical knowledge of systems, and is
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FIG. 1. Time series x;(r) generated by the chaotic
1 g y

Hindmarsh-Rose model (8).

robust against the effect of noise due to the global non-
linear stability.

Next we will give three illustrative examples. We take
the famous Hindmarsh-Rose neuron model [11] as the
first example, which is governed by the following third-
order ordinary differential equation:

B =433 —x) s+ =153 —x,,
X3 = —rxz +4r(x; + 1.6),

with 0 < r <« 1. Here x; is the membrane potential of the
neuron, x, is a recovery variable, and x5 is a slow adap-
tation current. It has been found in [12] that the model
admits a chaotic attractor with » = 0.0012 and the exter-
nal current / = 3.281, see Fig. 1 for the chaotic time
series of x;. After transforming the unique fixed point
(—0.6835, —1.3359, 3.666) to (0,0,0), we stabilize suc-
cessfully this near-nonhyperbolic chaotic system by the
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FIG. 2. The chaotic Hindmarsh-Rose model (8) is stabilized
successfully by only two feedback signals, i.e., x; and x5, where
(a)—(c) show the temporal evolution of the variables x;, i = 1,
2, 3, and (d)—(e) correspond to the variable feedback strength
€, and €,.
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FIG. 3. The chaotic Hindmarsh-Rose model (8) may also be
stabilized by another two feedback signals, i.e., x, and x3.

proposed scheme, where the feedback control as (4) is not
added to the variable x,, i.e., letting €, = 0. The corre-
sponding numerical results and the evolution of € are
shown in Fig. 2, where the initial values are set as
(—0.5,—0.3,0.1,0,0), and the parameters y; =0.01, y; =
0.1. In addition, in Fig. 3 we show that this chaotic system
may also be stabilized by another two feedback signals,
i.e., x, and x5, where all initial values are same those in
Fig. 2 and parametrical values are set as y, =0.01, y; =
0.1. However, we find numerically that such stabilization
is troublesome by the other feedback signals, e.g., x; and
X, which confirms difficulty of stabilizing the near-
nonhyperbolic chaotic systems provided ignoring such
near-nonhyperbolicity (respectively, the slow variable).

The second illustrative example is the FitzHugh-
Rinzel neuron model [13]:
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FIG. 4. The FitzHugh-Rinzel neuron model (9) is stabilized
successfully by only two feedback signals, i.e., x; and x5, where
all parameters and initial values are same as those used in
Fig. 2.
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FIG. 5. The Réssler hyperchaotic system (10) is stabilized by
only two feedback signals, i.e., x, and x4, where (a)—(d) show
the temporal evolution of the variables x;, i = 1, 2, 3, 4, and
(e)—(f) correspond to the temporal evolution of feedback
strength €, and €4.

1
J'c1=x1 _§X?_X2 +X3+03125, (9)

XZ:008(O7 +x1 _O-SXQ), ).C3: —r(0775 +.X3 +x1),

where » = 0.0001. After transforming the unique fixed
point (—0.885, —0.231, 0.11) to (0, 0, 0), we stabilize suc-
cessfully this near-nonhyperbolic chaotic model by the
proposed adaptive-feedback scheme, see Fig. 4, where all
parameters and initial values are same as those used in
Fig. 2 in the first example.

(Remark—The reason why the initial values of x in
Figs. 2—4 look unlike the given values (—0.5, —0.3, 0.1) is
that these variables vary very quickly in the initial inter-
val of time while the whole time interval is too long).

To show the generality of the present method, our final
example is the famous Rdossler hyperchaos system:

).Cz =X + 0.25)62 + X4,
fC4 = _0.5X3 + 0.05X4.

X=X X3 (10)
X3 = 3 + X1X3,

Similarly after transforming the unique fixed point
(—5.4083, —0.5547,0.5547,5.547) to (0,0,0,0), the hy-
perbolic chaotic system is stabilized by the present
method, where the feedback control as (4) is added to
only the variable x,, i.e., letting €, = €3 = 0. The corre-
sponding numerical results and the evolution of € are
shown in Fig. 5, where the initial values are set as
(5,30, 5,10,0,0), and the parameters y, = y, = 0.2.

In conclusion, we have given a simple, systematic, and
rigorous method to stabilize nonlinearly finite-
dimensional chaotic systems, which does not need any
trial and error, physical intuition, and empirical determi-
nation of proportionality factor in comparison with the
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previous methods. Especially the method may be used to
stabilize the near-nonhyperbolic chaotic systems, which
all OGY-type methods will fail to stabilize. The proposed
method may be used to stabilize chaos into unstable
periodic orbits especially when the idea is extended to
discrete version by the invariance principle of difference
equations, which maybe helps us with comprehending
multipurpose flexibility of the brain. In addition, this
idea of control has been applied successfully to chaotic
synchronization by the author [14], so we believe that the
idea may be used to explore the interesting dynamical
properties found in neurobiological systems, i.e., the on-
set of regular bursts in a group of irregularly bursting
neurons with different individual properties [15].
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