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Exact Scale Invariance of Composite-Field Coupling Constants
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We show that the coupling-constant of a quantum-induced composite field is scale invariant due to its
compositeness condition. It is first demonstrated in next-to-leading order in 1=N in typical models, and
then we argue that it holds exactly.
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Composite fields induced by quantum fluctuations play
important roles in wide areas of physics. The Cooper pair,
or the order parameter in the Landau-Ginzberg theory of
superconductivity, can be taken as such a composite of
elementary fields in the system. The ideas are also suc-
cessfully used to describe properties of hadron dynamics
in the Nambu–Jona-Lasinio (NJL) model [1]. They are
further applied to induced gauge theories [2], induced
gravity [3], composite models of quarks, leptons, gauge
bosons, and Higgs scalars [4,5], various collective mo-
tions in nuclei and solid states, brane-induced gravity and
field theories [6], etc. The theories of the quantum-
induced composites are not renormalizable in many cases.
They can, however, be formulated as the special case of
some renormalizable theory with the compositeness con-
dition (CC) [7,8], which says that Z � 0, where Z is the
renormalization constant of the to-be-composite field. For
example, with CC, the Yukawa model for elementary
fermions and bosons reduces to the NJL model with
elementary fermions and composite bosons.

In spite of extensive studies in their long history, it is
not clear what happens in the infinite cutoff limit, or
equivalently, in the integral dimension limit of these
nonrenormalizable theories [7–9]. In fact, in any of the
known perturbative treatments, the induced composite
coupling constants vanish in this limit. Here we do not
adhere to this difficult problem. Instead we consider non-
limiting cases by fixing the number of spacetime dimen-
sions d � d0 � 2� at some value close to but different
from the integral number of physical dimensions d0 (�4
or 6 below). We interpret that it simulates existing finite
cutoffs in various physical systems in Nature. We adopt
the minimal subtraction scheme, where the poles in � are
retained in the renormalization constants. Note that, in
this scheme, the renormalization group is well defined
even for the nonlimiting case � � 0.

In this Letter, we show the following fact: In a
composite-field theory which is equivalent to some re-
normalizable field theory under CC, the induced coupling
constant of the composite field is exactly scale invariant
by virtue of the CC itself. We previously demonstrated it
in some models at the leading order in 1=N where N is the
number of the elementary matter species [10]. Here we
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first show it to next-to-leading order in 1=N and to leading
order in � with g2 � �=N in three typical models. Then
we argue that the scale invariance holds exactly [11]. It is
remarkable that the awkward nonrenormalizable theories
bury such a high symmetry in their depth. The compo-
siteness, i.e., the absence, of its elementary degree of
freedom protects the coupling constants from flowing
with the scale parameter.

Scalar composite in six dimensions.—We consider a
system of 2N complex scalar fields �i0 � ��i01; . . . ; �

i
0N�

(i � 1; 2) with mass m0 in six dimensions:

L � �i�j@��i0j
2 �m2

0j�
i
0j
2� � Fj��1

0�
2
0�j

2; (1)

where F is a coupling constant. This is one of the simplest
models that realize our present idea. Naively we can see
that the chain of �i0 loop diagrams gives rise to their
composite pole in the total momentum square of the
channel. It is systematically described in the following
way. The Lagrangian (1) is equivalent to

L 0 ��i�j@��i0j
2�m2

0j�
i
0j
2��j�j2=F����1

0�
2
0��H:c:;

(2)

where � is an auxiliary field. We compare this with the
renormalizable model for �i0 and an elementary complex
scalar �0 with mass M0 and a coupling constant g0:

~L � �i�j@��i0j
2 �m2

0j�
i
0j
2� � j@��0j

2 �M2
0j�0j

2

� g0�0��
1
0 ~�

2
0� � H:c: (3)

We renormalize �i0, �0, m0, M0, and g0 with the re-
normalization constants Z1, Z2, Z3, Zm, and ZM and the
renormalized quantities �, �, m, M, and g: �i0 �

������
Z2

p
�i,

�0 �
������
Z3

p
�,

������
Z2

p
m0 �

�������
Zm

p
m,

������
Z3

p
M0 �

�������
ZM

p
M, and

Z2

������
Z3

p
g0 � Z1g��; (4)

where a mass parameter � is introduced to make the
coupling constant g dimensionless. We can directly see
that (5) entirely coincides with (2) if

Z3 � 0; Z1 � 0; Z2 � 0; Zm � 0; ZM � 0;

(5)

and if we identify Z2� with Z1g��� and F with
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Z2
1g

2�2�=Z2
2ZMM

2. Thus we can calculate the physical
quantities in the system with (1) at nonvanishing � via
well understood Lagrangian (3) with the condition (5),
which is called ‘‘compositeness condition.’’ Equation (4)
indicates that the CC (5) is equivalent to

g0 !1; Z1 � 0; Z2 � 0; Zm � 0; ZM � 0:

(6)

After calculations, we get [with I � 1=6�4��3�]

Z1 � 1; Z2 � 1� N�1 ln�1� Ng2I�; (7)

Z3 � 1� �N � 2�g2I � 2N�1�1� Ng2I� ln�1� Ng2I�

(8)

to next-to-leading order in 1=N and leading order in �
with g2 � �=N. Then, the renormalization group beta
function is calculated as

� � �@g=@� � ��g� �N � 2�g3=6�4��3: (9)

The differential equation (9) is solved to give the running
coupling constant

g2 � �N � 2�=6�4��3���2�=g20�
�1

� a� �N � 2� ln�2=6�4��3��1 �O���; (10)

where the integration constant is chosen in accordance
with (4), and a � lim�!0f�N � 2�I � 1=g20g.

With CC (6), the �-dependent part in (10) disappears,
and (10) reduces to the scale invariant form

g2 � 6�4��3�=�N � 2�: (11)

In fact, (11) is the solution of CC (5) with Z3 in (8), and it
implies � � 0 within the present approximation. Thus,
here, the compositeness implies the scale invariance of
the induced coupling constant.

Nambu–Jona-Lasinio model in four dimensions.—We
consider a system of N fermions  0 � � 01; . . . ;  0N� in
four dimensions with the Lagrangian

L �  0i@6  0 � Fj 0L 0Rj
2; (12)

where F is a coupling constant. (Note that the notations
are renewed model by model.) The composite pole due to
the chain of  0 loops is systematically described in the
following way. The Lagrangian (12) is equivalent to

L 0 �  0i@6  0 �  0L� 0R � H:c:� F�1j�j2; (13)

where � is an auxiliary field. We compare this with the
Yukawa model for  0 and an elementary boson �0 with
mass M0 and coupling constants g0 and �0:

~L �  0i@6  0 � g0� 0L�0 0R � H:c:� � j@��0j
2

�M2
0j�0j

2 � �0j�0j
4: (14)

We renormalize  0, �0, M0, g0, and �0 with the renor-
malization constants Z1, Z2, Z3, Z4, and ZM and the
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renormalized quantities  , �, M, g, and �:  0 �
������
Z2

p
 ,

�0 �
������
Z3

p
�,

������
Z3

p
M0 �

�������
ZM

p
M, and

Z2

������
Z3

p
g0 � Z1g�

�; Z2
3�0 � Z4��

2�; (15)

where the coupling constants g and � are made dimen-
sionless with a mass parameter �. We can see that (14)
entirely coincides with (13) if we have the CC

Z3 � 0; Z4 � 0; Z1 � 0; Z2 � 0; ZM � 0;

(16)

and we identify F with Z2
1g

2�2�=Z2
2ZMM

2 and Z2� with
Z1g���. Thus we can calculate the physical quantities in
the system with (12) at nonvanishing � via well under-
stood Lagrangian (14) with CC (16). Equation (15) in-
dicates that the CC (16) is equivalent to

g0 ! 1; Z1 � 0; Z2 � 0; ZM � 0 (17)

with arbitrary �0.
After calculations, we get [with I � 1=�4��2�]

Z1 � 1; Z2 � 1� ln�1� Ng2I�; (18)

Z3 � 1� �N � 1�g2I � N�1�1� Ng2I� ln�1� Ng2I�;

Z4 � 1� �N � 8�g2I=�� 20��� g2�2I=��1� Ng2I�

� �N���1�20�� 18g2 � 2Ng4I� ln�1� Ng2I�

(19)

to next-to-leading order in 1=N and leading order in �
with g2 � �=N. Then the renormalization group beta
functions are calculated as

�g � �@g=@� � ��g� �N � 1�g3=�4��2:

�� � �@�=@� � �2��� �4N�g2 � 2Ng4�=�4��2

� �40�2 � 40�g2 � 20g4�=�4��2: (20)

The coupled differential equation (20) is solved to give
the running coupling constants

g2 � 1=�N � 1�I ��2�=g20�;

� �
�N � 8�I � �0�2�=g40
�N � 1�I ��2�=g20�

2 �
20��0 � g20�

2I�2�

�Ng20I ��2��3

�
18��0 � g20��

2�

N�Ng20I ��2��2
ln�1� Ng20�

�2�I�; (21)

where the integration constants are chosen with (15).
With CC (17), the �-dependent parts in (21) disappear,

and (21) reduces to the scale invariant form

g2 � �4��2�=�N � 1�; � � �4��2�=�N � 10�: (22)

In fact, (22) is the solution of CC (16) with Z3 and Z4 in
(19) [8], and it implies �g � 0 and �� � 0 within the
present approximation. Thus, here, the compositeness
implies the scale invariance of the induced coupling
constants.
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Induced gauge theory in four dimensions.—We con-
sider the strong coupling limit F ! 1 of the system of N
SU�Nc�-Nc-plet fermions  0 � � 01; . . . ;  0N� with mass
m0 in four dimensions:

L �  0�i@6 �m0� 0 � F� 0Ta�� 0�
2; (23)

where Ta is the generator matrix of the fundamental
representation of SU�Nc�, and �� is the Dirac matrix.
(Note that the notations are renewed model by model.)
The composite pole due to the chain of  0 loops is
systematically described in the following way. The
Lagrangian (23) is equivalent to

L 0 �  0�i@6 �m0� 0 �  0Ta�6 a 0 � F�1j�a
�j

2; (24)

where �a
� is an auxiliary vector field in the adjoint

representation of SU�Nc�. We compare this with the
SU�Nc� gauge theory for  0 and the elementary gauge
boson Ga

0� with the gauge coupling constant g0,

~L �  0�i@6 �m0� 0 � g0 0T
aG6 a0 0 �

1
4�G

a
0���

2; (25)

where Ga
0�� is the field strength of Ga

0�. We renormalize
 0, Ga

0�, M0, and g0 with the renormalization constants
Z1, Z2, Z3, and Zm and the renormalized quantities  ,Ga

�,
M, and g:  0 �

������
Z2

p
 ,Ga

0� �
������
Z3

p
Ga
�, Z2m0 � Zmm, and

Z2

������
Z3

p
g0 � Z1g��; (26)

where the coupling constant g is made dimensionless
with a mass parameter �. We can see that (25) entirely
coincides with (24) if we have the CC

Z3 � 0; Z1 � 0; Z2 � 0; Zm � 0; (27)

and we take Z2�
a
� � Z1g��Ga

� and F ! 1. Thus we can
calculate the physical quantities in the system with (23) at
nonvanishing � via well understood Lagrangian (25) with
CC (27). Note that, for a consistent quantum description,
we should and we can introduce the gauge fixing term and
the Faddeev-Popov term without changing physical con-
tents. We denote the gauge parameter by �. Equation (26)
indicates that the CC is equivalent to

g0 ! 1; Z1 � 0; Z2 � 0; Zm � 0; (28)

in terms of the bare parameters of (25).
After calculations, we obtain [with I � 1=�4��2�]

Z1 � 1�
9Nc
8N

ln
�
1�

2Ng2I
3

�
� �g2I

3N2
c � 2

4Nc
;

Z2 � 1� �g2I�N2
c � 1�=2Nc;

(29)

Z3 � 1�
�2N � 11Nc�g

2I
3

�
�Ncg

2I
2

�
1�

2Ng2I
3

�

�
9Nc
4N

�
1�

2Ng2I
3

�
ln
�
1�

2Ng2I
3

�
(30)
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to next-to-leading order in 1=N and leading order in �
with g2 � �=N. Then, the renormalization group beta
function is calculated as

� � �@g=@� � ��g� �2N � 11Nc�g
3=3�4��2: (31)

The differential equation (31) is solved to give the run-
ning coupling constant

g2 � �2N � 11Nc�=3�4��
2���2�=g20�

�1

f� a� �2N � 11Nc� ln�2=3�4��2��1 �O���g;
(32)

where the integration constant is chosen with (26), and
a � lim�!0f�2N � 11Nc�I=3� 1=g20g.

With CC (28), the�-dependent part in (32) disappears,
and (32) reduces to the scale invariant form

g2 � 3�4��2�=�2N � 11Nc�: (33)

In fact, (33) is the solution of CC (27) with Z3 in (30), and
it implies � � 0 within the present approximation. Thus,
here again, the compositeness implies the scale invari-
ance of the induced coupling constant.

We argue that the scale invariance of the composite-
field coupling constants persists in all orders. The �
dependences of g’s and � in (10), (21), and (32) due to
the differential equations (9), (20), and (31) originally
come from the relations (4), (15), and (26). The solutions
of (9), (20), and (31) are given by the algebraic solutions
of Eqs. (4), (15), and (26) with Z’s in (7), (8), (18), (19),
(29), and (30) inserted. The � dependences of the cou-
pling constants as the algebraic solutions of Eqs. (4), (15),
and (26) arise through the factors�� and�2� on the right-
hand side of (4), (15), and (26). With CC (6), (17), and
(28), the�-dependent parts disappear from Eqs. (4), (15),
and (26) in all orders. Therefore the coupling constants
g’s and � with CC are independent of the scale � in all
orders. The scale invariance of the composite-field cou-
pling constants holds exactly.

It holds in any order as far as the expansion is proper as
in the case of the 1=N expansion. However, the coupling-
constant expansions and loop expansions are improper
under CC, because CC at the lowest two orders implies
that infinite higher diagrams have the same order of
magnitude, and we cannot see the CC based scale invari-
ance at any particular order in these expansions. In gen-
eral, the CC can have an isolated solution that is not a
limit with respect to some particular perturbative pa-
rameter. The CC based scale invariance persists even in
this nonperturbative case. The composite coupling con-
stants are entirely on the fixed point from the infrared to
the ultraviolet region. They neither are asymptotically
free nor blow up at some finite scale. The composite-field
coupling constant has no Landau pole. So far we consid-
ered the cases where the induced coupling constants are
dimensionless. It is straightforward to extend the present
argument to the cases of induced coupling constants with
211602-3
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positive mass dimensions, i.e., the composite theories
equivalent to super-renormalizable theories with CC.
The induced composite-field coupling constants would
scale with its canonical dimensions.

The scaling properties would provide a powerful
clue to discriminate between compositeness and elemen-
tariness phenomenologically. For example, if the weak
bosons and Higgs scalar are quantum-induced compo-
sites [4,5], the coupling constants should be scale in-
variant. On the other hand, the photon and gluons cannot
be quantum-induced composites in spite of several
theoretical suggestions [2,4], since the running of cou-
pling constants is supported by experiments. The ele-
mentariness of the gluon is consistent with the related
theoretical indication by complementarity that asymp-
totically free gauge bosons cannot be a quantum-induced
composite [12]. The scaling behavior would also be real-
ized in various phenomena based on collective motions in
condensed matters. When fundamental fermions are
coupled to gravity, the dimensionless part of the in-
duced composite scalar sector is known to exhibit con-
formal symmetry, reflecting asymptotic conformal in-
variance of the fermion sector in the ultraviolet region
[13]. It would be an interesting challenge to inquire about
the interrelations between this conformal symmetry and
the scale invariance demonstrated here. The idea of the
quantum-induced composite is used explicitly or implic-
itly in many areas from particle to cosmological physics.
We expect that the scaling properties presented here
would have chances to be realized in many of such
systems and would elucidate varieties of phenomena in
Nature.
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