
VOLUME 93, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S week ending
12 NOVEMBER 2004
Absence of an Almeida-Thouless Line in Three-Dimensional Spin Glasses
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We present results of Monte Carlo simulations of the three-dimensional Edwards-Anderson Ising
spin glass in the presence of a (random) field. A finite-size scaling analysis of the correlation length
shows no indication of a transition, in contrast with the zero-field case. This suggests that there is no
Almeida-Thouless line for short-range Ising spin glasses.
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FIG. 1 (color online). (a) H–T phase diagram expected ac-
cording to RSB for the short-range case. For T < Tc�H� there is
a spin-glass phase (SG), whereas for T > Tc�H� the system is in
the paramagnetic (PM) state. The value of the critical field at
T � 0 is called HAT. (b) H–T phase diagram following the
predictions from the droplet picture. A spin-glass phase exists
only for H � 0.
Since the work of Ballesteros et al. [1], there has been
little doubt that a finite-temperature transition occurs in
three-dimensional spin glasses [2]. However, the behavior
of a spin glass in a magnetic field is less well understood.
In mean-field theory [5], which is taken to be the solution
of the infinite-range Sherrington-Kirkpatrick (SK)
model [6], an Ising system [3] has a line of transitions
in a magnetic field [7], known as the Almeida-Thouless
(AT) line. This line separates the paramagnetic phase at
high temperatures and fields from the spin-glass phase at
lower temperatures and fields. Although there is no
change of symmetry at this transition, the relaxation
time diverges (and for short-range systems so does the
correlation length as we shall see). In the spin-glass phase
below the AT line, there is ‘‘replica symmetry breaking’’
in which the free energy landscape breaks up into differ-
ent regions separated by infinite barriers, and the distri-
bution of relaxation times extends to infinity.

It is important to know whether the AT line also occurs
in more realistic short-range models, since the two main
scenarios that have been proposed for the spin-glass state
differ over this issue. In the ‘‘droplet picture’’ [8–11] there
is no AT line in any finite-dimensional spin glass. By
contrast, the ‘‘replica symmetry breaking’’ (RSB) picture
[12–15] postulates that the behavior of short-range sys-
tems is quite similar to that of the infinite-range SK
model which does have an AT line as just mentioned.
Both scenarios are illustrated in Fig. 1.

Experimentally, it has proved much more difficult to
verify the transition in a field than for the zero-field
transition. For the latter, the divergence of the nonlinear
susceptibility gives clear experimental evidence of a tran-
sition, but unfortunately this divergence no longer occurs
in a magnetic field. Experiments have therefore looked for
a divergent relaxation time, and a careful analysis by
Mattsson et al. [16] finds that this does not occur in a
field. However, not all experimental work has come to the
same conclusion [17].

In simulations, it is most desirable to perform finite-
size scaling on dimensionless quantities for reasons that
we will discuss below. One such quantity, the Binder ratio,
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gave some evidence for the zero-field transition [18,19].
However, the Binder ratio turns out to be very poorly
behaved in a field [20] in short-range systems, while for
the SK model it does indicate a possible transition [21],
although not with any great precision. Results of out of
equilibrium simulations on large lattices in four dimen-
sions [22] were interpreted as evidence for RSB, although
it is not completely clear that the true equilibrium behav-
ior is probed by this procedure [23]. By contrast, simula-
tions [24] corresponding to experimental protocols in
(nonequilibrium) aging experiments have been analyzed
in terms of a ‘‘dynamical crossover’’ consistent with the
droplet picture.

Houdayer and Martin [25] carried out interesting cal-
culations at T � 0 to determine HAT, the critical field at
T � 0, see Fig. 1, for a simple cubic lattice in three
dimensions. Their results indicated that HAT � 0, i.e.,
there is no AT line, although a subsequent zero-
temperature study by Krzakala et al. [26] found some
evidence of a critical field for H ’ 0:65, which is much
less than the ‘‘mean-field’’ value for this lattice [27] of
around 1.86. However, Krzakala et al. [26] could not
exclude the possibility that the critical field is zero.
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TABLE I. Parameters of the simulations for Hr � 0:3. Nsamp

is the number of samples, Nsweep is the total number of Monte
Carlo sweeps for each of the 4NT replicas for a single sample,
Tmin is the lowest temperature simulated, and NT is the number
of temperatures used in the parallel tempering method. For
other values of Hr, we used the same parameters but only
simulated L � 4, 6, and 8.

L Nsamp Nsweep Tmin NT

4 5000 6:0� 104 0.23 18
6 5319 6:0� 105 0.23 18
8 5000 6:0� 105 0.23 18
12 304 6:0� 107 0.23 18
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As noted above, the (dimensionless) Binder ratio has
provided some evidence for zero-field transition at finite
T. However, a much sharper signature of the zero-field
transition in three dimensions is provided by the corre-
lation length [1] from which a dimensionless quantity is
formed by dividing by the system size L. This approach
should also provide evidence from equilibrium calcula-
tions for a transition in a field, if one occurs, and in this
Letter we use it to determine whether there is an AT line
in a three-dimensional Ising spin glass. Our conclusion
will be that there is not, at least down to fields signifi-
cantly smaller than the value of 0.65 suggested by
Krzakala et al. [26].

The Hamiltonian we study is given by

H � �
X
hi;ji

JijSiSj �
X
i

hiSi; (1)

in which the Ising spins Si � �1 lie on the sites of a
simple cubic lattice of size N � L3 (4 	 L 	 12) with
periodic boundary conditions, and the nearest neighbor
interactions Jij are independent random variables with a
Gaussian distribution with mean zero and standard de-
viation unity. At each site there is a field hi which, like the
bonds, is randomly drawn from a Gaussian distribution,
and whose mean and standard deviation are given by


hi�av � 0; 
h2i �
1=2
av � Hr; (2)

where 
� � ��av denotes an average over the disorder. For a
symmetric distribution of bonds, the sign of hi can be
‘‘gauged away’’ so a uniform field is completely equiva-
lent to a bimodal distribution of fields with hi � �H. Our
choice of a Gaussian distribution, which still has an AT
line in mean-field theory, also puts disorder into the
magnitude of the hi.We use a Gaussian distribution, rather
than a uniform field, in order to apply a very helpful test
for equilibration, discussed below.

To determine the correlation length we calculate the
wave vector–dependent spin-glass susceptibility which,
for nonzero fields, is defined by

�SG�k� �
1

N

X
i;j


�hSiSjiT �hSiiThSjiT�
2�ave

ik��Ri�Rj�; (3)

where h� � �iT denotes a thermal average. As in earlier
work [1,28] the correlation length of the finite system is
defined to be

�L �
1

2 sin�kmin=2�

�
�SG�0�

�SG�kmin�
� 1

�
1=2

; (4)

where kmin � �2�=L; 0; 0� is the smallest nonzero wave
vector.

Now �L satisfies the finite-size scaling form

�L

L
� eX�L1=�
T � Tc�Hr���; (5)
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where � is the correlation length exponent and Tc�Hr� is
the transition temperature for a field strength Hr. Note
that there is no power of L multiplying the scaling func-
tion eX, as there would be for a quantity with dimensions.
This greatly simplifies the analysis since the critical point
can be seen by inspection as the temperature where data
for different sizes intersect.

On the AT line, T � Tc�Hr�, the ‘‘connected correla-
tion function’’ hSiSjiT � hSiiThSjiT becomes long range
and so, for an infinite system, the correlation length and
�SG�0� diverge while for a finite system, �L=L is inde-
pendent of L. Below the AT line, according to RSB the
correlation functions no longer have a ‘‘clustering prop-
erty,’’ i.e., limjRi�Rjj!1�hSiSjiT � hSiiThSjiT� � 0, so
�SG�0� / Ld and �L=L increases with L. Hence, accord-
ing to RSB, the behavior of �L=L should be qualitatively
the same as at the zero-field transition, namely, it de-
creases with increasing L above the transition, is inde-
pendent of L at the transition, and increases with
increasing L below the transition.

We use parallel tempering to speed up the simulations
but unfortunately it is less efficient in a field than in zero
field [29,30], because ‘‘chaos’’ with respect to a field is
stronger than chaos with respect to temperature. As a
result, the computer time increases very rapidly with
increasing L, so it is unlikely that we will be able to study
larger sizes in the near future without a better algorithm.
In order to compute the products of up to four thermal
averages in Eq. (3) without bias we simulate four copies
(replicas) of the system with the same bonds and fields at
each temperature.

Parameters of the simulation are shown in Table I. Most
of our work is for Hr � 0:3 since this is smaller than the
predicted [26,31] zero-temperature value of HAT � 0:65,
but is not so small that the results would be seriously
influenced by the zero-field transition. The lowest tem-
perature is 0:23 well below the zero-field transition tem-
perature which is about [32] 0:95.

For a Gaussian distributions of bonds and fields, the
expression for the average energy, U � 
hH iT�av, can be
integrated by parts with respect to the disorder distribu-
207203-2
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FIG. 2 (color online). An equilibration plot for L � 6; Hr �
0:3; T � 0:3 showing that the data for the average energy U and
the quantity U�q; ql�, defined in Eq. (7), approach their com-
mon equilibrium value from opposite directions as the number
of Monte Carlo sweeps Nsweep increases. The inset shows data
for �L=L indicating that it has equilibrated when U and
U�q; ql� have become equal.
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FIG. 3 (color online). Data for �L=L for Hr � 0 for different
sizes. Note that there are clear intersections at roughly a
common temperature, with the data splaying out at lower
temperatures. The temperature of the intersections is the
zero-field transition temperature, marked Tc in Fig. 1. In this
data, 5000 samples are used for the disorder average in each
system size.
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tion, with the result

U � U�q; ql�; (6)

where

U�q; ql� �
z
2

ql � 1

T
�

q� 1

T
H2

r ; (7)

where z ( � 6 here) is the number of neighbors, q is the
spin overlap given by

q �
1

N

XN
i�1


hS�1�i S�2�i iT�av; (8)

and ql is the ‘‘link overlap’’ given by

ql �
2

z
1

N

X
hi;ji


hS�1�i S�1�j S�2�i S�2�j iT�av: (9)

In Eqs. (8) and (9),‘‘(1)’’ and ‘‘(2)’’ refer to two copies of
the system with the same bonds and fields. Because U will
decrease as the system approaches equilibrium and q and
ql will increase (since we initialize the spins in the two
copies in random configurations), U and U�q; ql� ap-
proach their common equilibrium value from opposite
directions and so Eqs. (6) and (7) can be used as an
equilibration test. This is a generalization to finite fields
of a test used previously [33]. Figure 2 shows that these
expectations are born out. We accept a set of runs as being
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equilibrated if U � U�q; ql� within the error bars. The
inset to the figure shows that �L=L has equilibrated when
U and U�q; ql� have become equal.

It is useful to compare results in a field with those at the
zero-field transition. Hence in Fig. 3 we show data for
�L=L for Hr � 0 for sizes up to L � 12. For these results
we set hSiiT � 0 in Eq. (3). There are clear intersections,
with data splaying out at lower temperatures, indicating a
transition at T � Tc � Tc�Hr � 0�, in the region 0.95–
1.00, in agreement with Marinari et al. [32].

However, the analogous results for Hr � 0:3 shown in
Fig. 4 have no sign of an intersection for sizes up to L �
12 at temperatures down to T � 0:23, which is consider-
ably below the zero-field transition temperature of about
0.95. This provides quite strong evidence that there is no
AT line, except possibly for fields less than 0:3. In order to
test this possibility we have also performed simulations
down to Hr � 0:05 (for 4 	 L 	 8), and again found no
intersections. We have also performed simulations in a
uniform field, finding that data are very similar to those
for the random fields, and have no intersection down to
the lowest field studied, H � 0:1.

To go to low fields without passing too close to the
zero-field transition, we also tried a diagonal ‘‘cut’’ in the
Hr–T plane with Hr=T kept fixed at the constant value of
0:7. However, the equilibration problems were even more
severe than for Hr fixed at 0.3, and so we have not been
able to get useful data for this case.
207203-3



H   = 0.3r

ξ 
 /L L

L
4
6
8
12

0.7

0.6

0.5

0.4

0.3

0.2

0.1

   00    0.2  0.4   0.6  0.8   1    1.2   1.4
T

FIG. 4 (color online). Data for �L=L for Hr � 0:3 for differ-
ent sizes. Note that in contrast to the zero-field data in Fig. 3
there is no sign of intersections down to the lowest temperature
T � 0:23.
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To conclude, our finite-temperature Monte Carlo simu-
lations provide simple, direct evidence from equilibrium
calculations that there is no AT line in three dimensions.
Of course, the numerical data cannot rule out a transition
at exceptionally small fields, or the possibility of a cross-
over at much larger sizes to different behavior, but we see
no particular reason for these scenarios to occur.
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