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Directional Ordering of Fluctuations in a Two-Dimensional Compass Model
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In the Mott insulating phase of the transition metal oxides, the effective orbital-orbital interaction is
directional both in orbital space and in real space. We discuss a classical realization of directional
coupling in two dimensions. Despite extensive degeneracy of the ground state, the model exhibits
partial orbital ordering in the form of directional ordering of fluctuations at low temperatures stabilized
by an entropy gap. Transition to the disordered phase is shown to be in the Ising universality class
through exact mapping and multicanonical Monte Carlo simulations.
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Recently, there has been growing interest in the effects
of orbital degeneracy in the physics of transition metal
oxide (TMO) insulators [1,2]. In these systems, the domi-
nating energy scales for d electrons on the TM ions are the
on-site Coulomb repulsion (which freezes out the charge
degrees of freedom), the Hund’s rule coupling, and the
crystal field due to the surrounding oxygen ions. The
latter two together determine the degeneracies and de-
grees of freedom of spin and orbital on each transition
metal ion. Spins and orbitals on neighboring TM ions can
then be coupled through the superexchange mechanism.
In the case of orbitals, they are also coupled through the
phonon-mediated cooperative Jahn-Teller mechanism
[1]. These couplings determine the low temperature prop-
erties of these systems.

Because orbital coupling is intrinsically directional
[3], orbital ordering brings up some unusual questions.
Especially interesting is when the coupling along a given
bond direction is Ising-like, but with different Ising axes
along different bond directions [4]. The Hamiltonian for
orbitals is then given by

H= —JZTi fy;T; Ry, 1))

(i)

where 7 is an isospin operator representing the orbital
degree of freedom, and fi;; is a unit vector. For example,
for e, orbitals in Perovskite structures, ﬁ,-j for the three
different bond directions are coplanar and oriented rela-
tive to each other by 120°, giving rise to the so-called
120° model [4-6]. This model is also applicable to 7,,
orbitals on the three bonds of a honeycomb lattice as in
planes of V,03 [7,8]. On the other hand, for 1,, orbitals on
Perovskite structures (e.g., LaTiO; [9]), the relevant
model is the compass model [1,4,10] with A;; = &, §, 2
for the three bond directions. The compass model may
also feature as part of the spin-spin coupling of 7,,
orbitals when spin-orbit interaction is taken into account
[11]. A common feature of both the compass model and
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the 120° model is the competition between bonds in
different directions, with the resulting frustration leading
to macroscopic degeneracy of the classical ground state.

In this Letter, we report analytical and numerical
results on a classical version of (1) in two dimensions
(2D). The highly anisotropic coupling gives rise to inter-
esting interplay between one- and two-dimensional order-
ing, between continuous and discrete spin physics, and
between slow and fast modes. Our main result is that at
low T >0, there is no conventional ordering [12], but
there is, nevertheless, long-ranged order (LRO) in the
form of a directional ordering in fluctuations. This order-
ing corresponds to a partial breaking of the fourfold
symmetry and is stabilized by entropy. In this phase,
the system exhibits spontaneous dimension reduction by
essentially decoupling into one-dimensional (1D) chains
running either horizontally or vertically along the bonds.
Through exact mapping and extensive Monte Carlo simu-
lations, we show that this ordering transition belongs to
the Ising universality class. We then discuss generaliza-
tions of these results to the quantum case and in three
dimensions, as well as their implications with respect to
orbital ordering,

Consider the classical compass model on a square
lattice of N = L X L sites,

H= _JZ(SixSi+)€,x + SiySitsy), )

where S; = (cos#;, sinf;) represents either a real spin or
an orbital isospin. On the square lattice, the sign of J can
be gauged away, so we take J > 0. Along each row (col-
umn), we have a simple Ising model (IM) with quantiza-
tion axis along X (). Hamiltonian (2) has two types of
discrete symmetry. (I) There is a global fourfold rotation
symmetry corresponding to simultaneously rotating the
spins and lattice by multiples of 90°. (II) In addition, it is
also invariant under the 1D spin flip transformation §;, —
—Si» Siy — §;, for all i on any one row and S;, — S,
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Sijy — —S§;, for all i on any one column. Since sym-
metry (I) is two-dimensional, we expect that it may be
broken at finite 7, while the 1D nature of symmetry (II)
should imply no symmetry breaking except possibly at
T = 0. We see, indeed, that this is the case, but the
physics leading to it and their consequences are not
trivially deduced from such symmetry considerations.

The low temperature properties of (2) are further com-
plicated by an additional O(2) degeneracy. Apart from a
constant term, Eq. (2) can be written as

_J 2 : . 2
= EZ[(COSQ,- — cosQH;\) + (sin#; — sm0i+;§) 1 3

Clearly 6; = 0 is a ground state, as are the D = 2 X 2F
states obtained from it by the symmetry operations (I)
and (IT). However, Eq. (3) shows that the ground state
energy is invariant under arbitrary global rotation of 8; =
0 to 6; = 6. Unlike the isotropic XY model, where this
invariance holds for each bond, here the energy loss from
the horizontal bonds are compensated by energy gain in
the vertical bonds. Thus, the ground state exhibits an O(2)
degeneracy not related to the symmetries of H. We see
that this “accidental”” degeneracy is lifted at finite tem-
peratures by entropy due to slow mode fluctuations.

Upon a redefinition of the spins through sym-
metry (II), any of the ground states mentioned above
can be recast as 6; = 6. To study slow mode physics, we
start with the spin-wave or harmonic approximation.
Expanding (3) to the second order in ¢; = 6; — 0, we
obtain the spin-wave Hamiltonian in Fourier form,
Hgw = JY (€,(60)| ¢, |*. For general 6, the spin-wave spec-
trum €,(0) = (1 — cosk,)sin*6 + (1 — cosk,)cos?6 is an
anisotropic 2D one, with zero modes at k, = ky = 0.
However, for special ordering directions § = 0, 7/2, ,
and 377/2, the spectrum becomes 1D-like, independent of
either k, (6 = 0, 7) or k, (§ = 7/2,37/2), and the den-
sity of states of gapless excitations is 1D rather than 2D.
The high density of low lying states suggests an entropic
mechanism to stabilize these four directions at 7 > 0.

To put the discussion on a firmer footing, we employed
a self-consistent harmonic approximation for the ordered
phase at 6 = 0. Based on the Bogolyubov-Peierls theorem
[13,14], F < Fy — (Hy)y + (H)y, we compute the varia-
tional free energy using a trial Hamiltonian H, =
JY ail@il*. Minimizing the free energy, we obtain

ap = m + y,(1 — cosk,) + y,(1 — cosk,), 4

where m is the self-consistent spin-wave gap, and 7y, and
Y, are the self-consistent stiffnesses.

At low temperatures, a 1D spectrum with y,(T) = 0,
y,(T) =1 = O(T*3), and m(T) = 17?3 + O(T) is ob-
tained. Anharmonic effects are incorporated into a shift
of these parameters at finite 7 from their bare spin-wave
values. Most significantly we see that a gap m is gener-
ated, which suppresses the diverging 1D fluctuations in
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the spin-wave analysis, and stabilizes the ordering along
one of the four special directions.

To address whether there is ordering into one of the D
degenerate ground states, we need to consider the effects
of fast modes or, more precisely, abrupt spin flips. For this
purpose, the continuous nature of the spins should not be
crucial, so we discretize the compass model into a ““four-
state Potts compass model (PCM)” with the same sym-
metry as (2), given by

Hp = —J Z(”ia—ni-%—fc,aa-ia'i-%—)? T it TiTivg),  (5)

where on each site we have “occupation numbers” n;, =
0,1 and n;, = 1 — n;,. If n;, = 1, then there is an addi-
tional internal degree of freedom o = *1, and similarly
for n;, and 7. The correlation of these internal degrees of
freedom with the occupation numbers together with the
constraint in the latter couple these various variables.

The partition function of the PCM takes the form Zp =
Tr{nm}TrgUm} exp(—BHp), where Tr' indicates that for a
given configuration of {n;,} the trace over o(7) should be
on only those sites with n;, = 1(0). On the other hand, we
note that if, for example, n;, = 0, then Hp is independent
of o, and tracing over o; = %1 simply gives a super-
fluous factor of 2. Thus, Tr' can be replaced by the un-
restricted Tr to give Zp = 27"Try, yTry, .yexp(—BHp).
The trace over o and 7 can now be easily done using a
transfer matrix since Hp consists of decoupled 1D chains
as far as o and 7 are concerned, resulting in Zp =
Try,, , exp(— BH.g), where

Hegp = —Tn[cosh(BN]D (nighiss,0 + nizhivs,s)
— Tln[l + tanhL(BJ)][ZCa + ZDY} (6)
a@ Y

In the last two terms of Hg, C,, = [[;0i0Ri+1,0- for all
sites i in the row «, while D,, = [];n,n ,, for all sites j
in the column y. At any 7 > 0, these two terms are finite-
sized terms that vanish in the thermodynamic limit L —
oo, Ignoring them, we may rewrite H.; in terms of
Nig,r = %(1 + Iu‘i) as

Hep = —2NJ — jZ(MiMch T Mikkitg): (7

The four-state PCM is thus mapped exactly into the 2D
Ising model (2DIM). The coupling constants of the two
models are related by J = TIn[cosh(J/T)]/4. From the
2DIM exact 7, = 2J/In(1 + V2), we conclude that the
PCM has LRO for all T <T, = 0.4084J. What is the
nature of this LRO? First, note that because the trace
over o and 7 are for decoupled chains, {o;) and (7;) =0
for all T > 0. Instead, the 2DIM uniform ordering of {u,;)
corresponds to (n,) — (n,) # 0. In other words, the order-
ing is not a conventional ordering with the spins sponta-
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neously pointing along one of the four possible states, but
of them having stronger fluctuations in two of the four
states, henceforth called directional ordering of fluctua-
tions. In this phase, the Z, symmetry of the compass
model is only partially broken into Z, X Z, . WhileatT =
0, the ground state has macroscopic degeneracy, the free
energy has only two degenerate minima at 7 = 0.

Based on symmetry considerations and on our entropy
stabilization arguments earlier, we expect the above con-
clusions to hold also for the continuous compass model
except for the value of T',.. To confirm this and to rule out a
preemptive first order transition, we perform Monte Carlo
simulations. However, such simulations are complicated
by the strong size dependence that originates from the
finite-sized terms in Eq. (6) under the periodic boundary
condition when the 1D correlation length &, exceeds the
linear system size L at sufficiently low temperature. To
eliminate this effect, we adopted a “‘bond fluctuating”
boundary condition. A multicanonical Monte Carlo
scheme [15] is used to sample the degenerate low energy
states. Details will be published elsewhere.

Figure 1(a) shows the average of the directional or-
der parameter g =N"'Y (S} — S})=N"'Y;cos26,
against T for L = 8, 12, 16, 24, 32, and 48. The existence
of an ordered state at low temperatures is evident from the
data. To locate the transition point, we computed the
Binder cumulant B = 1 — (¢*)/(3(¢?*)?) for various sys-
tem sizes, as shown in Fig. 1(b). At T = T, the value of B
should be size independent and universal; hence, we
estimate T./J = 0.147 = 0.001. The value of B at the
crossing point for large system sizes also agrees reason-
ably well with the 2DIM result B, = 0.61069... [16].
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FIG. 1. (a) Directional order parameter against temperature 7'
for the 2D compass model at various system sizes. (b) Binder
cumulant against temperature. The critical temperature is esti-
mated at 7./J = 0.147 = 0.001. The dashed line shows the
value of B for 2DIM at criticality.
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Figure 2 shows the specific heat data for the six differ-
ent sizes up to L = 48. A weak divergence near the 7.
value determined above is clearly seen. The inset shows
the same data in the critical region after subtraction of a
background linear function, plotted using the scaled var-
iables according to the finite-size scaling form derived in
Ref. [17]. Apart from the smallest size at L = 8, the data
collapse is quite satisfactory.

The simulation data show quite convincingly that di-
rectional ordering exists at low temperatures with a non-
zero value of the directional order parameter q. The
transition to the disordered phase is an ordinary continu-
ous transition of the Ising universality class, just as in the
PCM. The transition temperature of the continuous com-
pass model, on the other hand, is considerably lower than
that of the PCM. We attribute this to the softening of
domain wall energy in the continuous model. Indeed, the
free energy gap between the favored orientation and other
states does not remain constant, but, in fact, vanishes as
7%/ at low T.

We next discuss the implications of our results to
orbital ordering, taking the spin in the Hamiltonian to
represent the orbital isospin. For TMO, the relevant S are
then 1/2 and 1 for double and triple orbital degeneracy,
respectively, and the isospins are quantum mechanical.
Rigorous results are not available for the quantum model,
but some qualitative and physical arguments can be made.
In the quantum model, there are fluctuations about the
classical ground state even at T = (. Some aspects of
these fluctuations manifest themselves in similar ways
to thermal fluctuations, and serve to both stabilize and
destabilize LRO. The 6 = 0, 7/2, 7, and 37/2 ordering
directions are stabilized by renormalized spin-wave fluc-
tuations that lift the O(2) degeneracy while also generat-
ing a gap. This conventional ordering is weakened by fast
mode fluctuations. However, a simple-minded 2 + 1 di-
mension argument implies that unlike thermal fluctua-
tions, the disordering effects of fast mode physics destroy
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FIG. 2. Specific heat against temperature for the 2D compass
model. Inset: Same data plotted using scaled variables.
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the conventional ordering only if they are sufficiently
strong. The same argument suggests that the disordering
effect on directional ordering is even weaker. However,
the true description of the fast mode physics involves
understanding the physics of instanton tunneling of the
quantum model, and is beyond the scope of this Letter. At
any rate, we expect the directional ordering shown in the
classical model to be stable against weak quantum fluc-
tuations at low but finite 7. Indeed, the 7 = 0 gap of the
quantum model may actually stabilize the directional
ordering at low T.

The directional ordering leaves the orbital degeneracy
completely (S = 1/2) or partially (S = 1) unbroken. In
the case of S = 1, the directional ordering reduces the
triple orbital degeneracy to double degeneracy. In the case
of $=1/2, §? = 5% = 1/4, and the directional order
parameter g is defined above = 0. Instead, we define an
alternative directional order parameter applicable for all
S, namely, r = (S;:S;4x — SiySity,y), Which like g shows
LRO in the direction of fluctuations in isospin space. An
advantage of r over ¢ is that it explicitly displays the
energy difference between horizontal and vertical bonds
and hence the broken lattice rotation symmetry. A con-
sequence of this is that, when the couplings of the orbital
isospin to lattice modes are included, the directional
ordering is necessarily accompanied by a lattice distor-
tion so that the bond lengths in horizontal and vertical
directions become unequal.

Our results can be generalized to the compass model on
the 3D cubic lattice, now with a three-component spin
S = (S, S,,S;). Slow mode physics stabilize orderings
along =X, £, *Z. Restricting to the six special direc-
tions, we can then consider the corresponding six-state
PCM [18]. The mapping we used to map the 2D four-state
PCM into the 2D Ising model can be applied here too.
However, in this case, the mapping does not result in an
ordinary three-state Potts model, but in a three-state
PCM, H = = injghjyy g + Nizliyy r + N0y, Where
Nigrn =01 and n;, +n;; +n;, = 1. There is no
known solution to this model. Heuristic domain wall
analysis suggests that directional ordering is stable at
low T, but more rigorous calculation is necessary for
this to be conclusive. Unlike the 2D case, the degeneracy
of the directional ordered state, while less than the ground
state degeneracy of D = 3 X (2 X 2F)E, is also macro-
scopic and found to be 3 X 2 X 2F. Notice that the fluc-
tuation effects are stronger in 3D than 2D, and, in fact, in
general, the higher the dimension, the stronger the fluc-
tuations, a point previously pointed out by Khomskii and
Mostovoy in Ref. [4].

In general, the real system may not correspond pre-
cisely to the compass model. As an example, we consider
an additional isotropic XY coupling of strength J' which
is identical for all the bonds. At low T (T < J'), this term
suppresses the arbitrarily large 1D domains, and conven-
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tional ordering given by (S;) # 0 is stable. However, this
ordering cannot persist beyond T of order J' since the
correlation function for S; is short ranged for all 7 >0
when J/ = 0. Furthermore, the J’' term does not tend to
disorder directional ordering, only to augment it to con-
ventional ordering. Hence, for small J/, we expect direc-
tional ordering to be stable at intermediate temperatures,
and the directional ordered phase is robust and observable
in systems with Hamiltonians close to the compass
model.

In conclusion, we have established that the compass
model has a low temperature phase characterized by
(S;) = 0, but with long-ranged correlations in the direc-
tion of fluctuations in both isospin and lattice spaces.
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