
VOLUME 93, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S week ending
12 NOVEMBER 2004
Goldstone-Mode Relaxation in a Quantized Hall Ferromagnet

S. Dickmann
Institute for Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia

(Received 20 December 2003; published 11 November 2004)
206804-1
We report on a study of the spin relaxation of a strongly correlated two-dimensional electron gas in
the � � 2�� 1 quantum Hall regime. As the initial state we consider a coherent deviation of the spin
system from the B direction and investigate a breakdown of this Goldstone-mode (GM) state due to the
spin-orbit coupling and smooth disorder. The relaxation is considered in terms of annihilation processes
in the system of spin waves. The problem is solved at an arbitrary value of the deviation. We predict that
the GM relaxation occurs nonexponentially with time.
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In spite of much recent interest in the spin relaxation
(SR) in a two-dimensional electron gas, only a few of
works have been devoted to the SR in the quantized Hall
regime proper [1–4]. Meanwhile, exactly these quantum
Hall conditions enable one to study a Goldstone mode
(GM), which is a remarkable collective state representing
quantum precession of a macroscopically large spin S
around the B direction. We study the case of a quantum
Hall ‘‘ferromagnet’’ (QHF); i.e., the filling factor is � �

N =N� ’ 2�� 1, where N and N� � L2=2�l2B are the
numbers of electrons and magnetic flux quanta (lB is the
magnetic length). In the solution to the first order in the
ratio rc � �e2="lB�= �h!c considered to be small (e2="lB is
the characteristic Coulomb energy; !c is the cyclotron
frequency) we get the ground state with �� 1 low
Landau levels fully occupied and with the �th level filled
only by spin-up electrons aligned along B. The total spin
is S0 � N�=2. This system provides a rare case where a
relaxation problem may be solved analytically for any
value of the initial deviation (not necessarily small). The
SR process is found to occur nonexponentially.

Up to now only a bare handful of experimental results
relevant to the SR in a QHF were obtained: indirectly, in
Ref. [1] the linewidths of the electron spin resonance
(ESR) were measured; and then directly, the photolumi-
nescence dynamics of spin-up and spin-down states was
studied [2]. Although these experiments do not concern
exactly the GM relaxation, the measured times, 5–10 ns,
should also be characteristic of the GM decay. These are
rather long, exceeding by 1–2 orders the single-electron
SR times observed in GaAs quantum wells [5].

In our problem the relevant SR time is actually not a
spin dephasing time but the time of Zeeman energy
relaxation due to the spin-flip process. Indeed, any spin
flip means actually a reduction of the Zeeman energy
�Z�Sz ( ~B k ẑ, �Sz � Sz � S0 is the Sz component devia-
tion from the equilibrium value S0, �Z � jgj�BB is the
Zeeman energy of one spin-flipped electron, g 	 �0:44).
The spin-flip mechanism which makes the relaxation
irreversible has thereby to provide the energy transform.
In this Letter, we report on the study where the spin-orbit
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(SO) coupling is considered as the cause mixing different
spin states, and the disorder [to be more precise, a smooth
random potential (SRP)] as the condition of irreversibil-
ity. The proposed SR mechanism is thereby purely elec-
tronic. Energy conservation leads to an intermediate state
with spatially modulated electron density and reduced
Zeeman energy (at the expense of exchange energy).
Namely, in terms of spin waves (spin excitons), the SR
presents an annihilation process diminishing the number
of spin excitons (SEs). The elementary event is a SE
‘‘coalescence’’ transforming the Zeeman energy 2�Z of
two ‘‘cold’’ SEs (with negligible momenta) into the en-
ergy of a single SE. The latter has a pronounced momen-
tum q
 and the energy consisting of both the Zeeman part
�Z and the kinetic part �q
2.

This comparatively slow process is only the first step of
the relaxation. The second one is a fast ‘‘cooling’’ of the
intermediate state (with momentum q
). The electron-
phonon interaction (not considered directly) does not
change the spin state but provides a rapid thermalization
occurring much faster than the SR. (Thermodynamic
relaxation times are estimated to be &1 ns.)

An important feature of the present work consists of
applying a microscopic approach to the study of the
motion of the classical QHF spin. Indeed, this differs
from the current continuum-field technique (see the pio-
neering work [6] and Ref. [7]) based on the generalization
of the nonlinear � model. However, the presently used
method of the excitonic representation [3,8] has some
advantages. Operating virtually in terms of many-exciton
quantum-mechanical states, it can describe the dynamics
of latent processes of spin-exciton (spin-wave) condensa-
tion. Namely, the GM relaxation is presented as a decay of
the condensate of ‘‘zero’’ spin SEs (having momenta
strictly equal to zero) with a simultaneous transformation
to the ‘‘nonzero-exciton’’ condensate. After the develop-
ment stage, the latter also dies out with time.

Other key points of the calculation are as follows: we
use, as a bare one-electron basis, the set of states where
the SO coupling is immediately (to the lowest order)
taken into account; in terms of these states we present
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the SRP as a secondary-quantized operator and employ
the Fermi golden rule to find transition rates. Matrix
elements are calculated between many-exciton states.

So, the starting point is the initial state jii � �Ŝ��
Nj0i,

where j0i stands for the QHF ground state and Ŝ� �P
j�̂

�j�
� is the lowering spin operator. [j labels electrons;

�̂ � ��̂x  i�̂y�=2, where �̂x;y;z are the Pauli matrices.]
The number N is assumed to be macroscopically large:
0 � N < N�. The spin numbers of the jii state are S �

S0 � N�=2 and Sz � N�=2 � N. The total Hamiltonian

has the form Htot �
P
jH

�j�
1 �Hint. The Hint operator

presents here the Coulomb interaction part of the
Hamiltonian, and H1 is the single-electron part:

H1 � �h2q̂2=2m

e � �Z�̂z=2 �HSO � ’�r�; (1)

where q̂ � �ir� eA=c �h is a 2D operator and ’�r� is the
SRP field [r has components �x; y�]. The SO Hamiltonian
is specified for the (001) GaAs plane,

HSO � #�q̂� �̂�z � $�q̂y�̂y � q̂x�̂x�; (2)

and presents a combination of the Rashba term [9] (with
the coefficient #) and the crystalline anisotropy term [10]
(see also Ref. [3]). The parameters # and $ are small:
#;$� lB �h!c (really #< $� 10�7 K cm < lB�Z).

The relevant analysis shows that the SO interaction (2)
alone does not provide a quantum fluctuation from the
GM to any state with a nonuniform electron density. This
fact generates a need to take into account the SRP which
is assumed to be Gaussian, i.e., determined by the corre-
lator K�r� � h’�r�’�0�i. If choosing h’�r�i � 0, then, in
terms of the correlation length � and Landau level width
�, the correlator is K�r� � �2 exp��r2=�2�. In a real
situation � 	 5–10 K, and � � 30–50 nm. We consider
that �> lB and besides

T & T
 � �Z <� � e2="lB < �h!c: (3)

Here the first inequality counted from the right justifies
the approximation of projection onto a single Landau
level; the second one determines the QHF ‘‘rigidity’’
with respect to the SRP fluctuations. T is the temperature,
which is actually assumed to be zero in the calculations
(the value T
 is determined by the SRP and will be
defined later). The two left inequalities (3) mean that
the energy of metastable (cooled down) SEs is accumu-
lated only in their Zeeman parts.

The SEs are lowest-energy eigenstates of the QHF.
Before describing them by means of exciton-creation
operators, we choose the single-electron basis which di-
agonalizes the first three terms in Eq. (1) to within the
leading order in u � $

���
2

p
=lB �h!c and v � #

���
2

p
=lB �h!c:

�pa �

�
 �p

v
�������������
�� 1

p
 ��1p � iu

����
�

p
 ��1p

�
;

�pb �

�
�v

����
�

p
 ��1p � iu

�������������
�� 1

p
 ��1p

 �p

�
:

(4)
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( �p is the electron wave function in the Landau gauge.)
Now we can define the exciton operator (cf. [3,8]):

Q y
abq �

1�������
N�

p X
p

e�iqxpl
2
Bbyp�qy=2ap�qy=2; (5)

where ap and bp are the Fermi annihilation operators
corresponding to the states (4). The annihilation excitonic
operator is Qabq � Qy

ba�q and we employ also the

‘‘shift’’ operators Ay
q � N�1=2

� Qy
aaq and By

q �

N�1=2
� Qy

bbq. In the following we drop the ‘‘spin-orbit’’
index ab in the definition (5). The commutation rules
present a special Lie algebra:

�Qq1
;Qy

q2
� � ei.12Aq1�q2

� e�i.12Bq1�q2
;

ei.12�Aq1
;Qq2

� ��e�i.12�Bq1
;Qq2

� �N�1
� Qq1�q2

;
(6)

where .12 � l2B�q1 � q2�z=2. Besides, evidently
�Qq1

;Qq2
� � �Aq1

;Bq2
� � 0. In the ground state j0i,

we have Aqj0i � /q;0j0i and Bqj0i � 0.
In the limit � ! 0, HSO ! 0 and at rc � 1 the state

jN; 1;qi � Qy
q�Q

y
0 �
Nj0i (7)

is the eigenstate of the system studied. If q � 0, it has
the spin numbers S � N�=2 � 1 and Sz � N�=2 � 1 � N
[see below the expressions (8) which should be used to
calculate S and Sz] and the energy �N � 1��Z � Eq, where
Eq is the exchange part of the SE energy. The small mo-
mentum approximation qlB � 1 is quite sufficient for our
problem; therefore Eq � �qlB�2=2Mx;� (see the general
expression, e.g., in Ref. [11]). Here Mx;� is the SE mass
at � � 2�� 1, in particular: 1=Mx;0 � �e2="lB�

���������
�=8

p
.

In terms of the excitonic representation, spin operators
are invariant with respect to HSO:

Ŝ z � N��A0 �B0�=2; Ŝ� � N1=2
� Qy

0 ;

Ŝ2 � N�Q
y
0Q0 � Ŝ2

z � Ŝz:
(8)

At the same time in the basis (2) the operators ’�r� and
Hint acquire corrections proportional to u and v.
Calculating

R
�y’�r��d2r, where � �

P
p�ap�pa �

bp�pb�, we get the terms responsible for a spin flip:

’̂ � N1=2
� lB

X
q
’�q��iuq� � vq��Qq � H:c: (9)

(we consider qlB � 1). Here ’�q� is the Fourier compo-
nent [i.e., ’ �

P
q ’�q�e

iqr], and q � �i�qx  iqy�=
���
2

p
.

In spite of the existence of a formal operator equiva-
lence Qy

0 � limq!0Q
y
q we find that jN; 1; 0i and

limq!0jN; 1;qi present different states [12]. Indeed, in
these states the system has different spin numbers S �

N�=2 and S � N�=2 � 1, respectively. (Sz � N�=2 �

1 � N is the same for both.) So, the excitation of a zero
exciton (q � 0) corresponds to the Sz ! Sz � 1 transition
without any change of the S number, whereas each ‘‘non-
206804-2
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zero’’ SE changes both numbers by 1: S! S� 1, Sz !
Sz � 1. Let us introduce the notation jNi � �Qy

0 �
Nj0i.

The initial state jii is actually a ‘‘Goldstone condensate’’
(GC) containing N zero excitons: jii � jNi.

The state jNi is degenerate, and the GC breakdown is
studied in terms of the transitions governed by the Fermi
golden rule probability: wfi � �2�= �h�jMfij

2/�Ef � Ei�.
In our case, the final state jfi is obviously the state where
a part of the Zeeman energy has been converted into a SE
kinetic energy. Since it is exactly the single-electron
terms that constitute the perturbation responsible for
the Mfi matrix element, we could find that such a
transition is the 2X0 ! Xq
 process in the lowest order
of the perturbative approach (we denote the zero exciton
by X0 and the nonzero one by Xq). The final state for this
transition is thereby jfi � jN � 2; 1;q
i. The value q
 is
determined by the energy conservation equation Ef � Ei
which reads 2�Z � �Z � E�q
�; i.e., q
 �

������������������
2Mx;��Z

p
=lB.

The transition is determined by the operator (9), and
corresponding matrix element Mif � hq
; 1;N � 2j �

’̂jNi�R�N�R�N � 2; 1;q
���1=2 was actually calculated
in Ref. [3]. [The SRP plays the same role as the phonon
field studied there, and hence the physical processes de-
scribed by Mif can be seen in more detail from, e.g., the
diagram presented in Fig. 1(a) in the second paper of
Ref. [3].] Here and in the following the notation R�� � ��
stands for the norm of the state j � � �i [3,8]. The result is
jMifj

2 � N�N�1�
2N�

�u2 � v2�jq
lB’�q
�j2 (it has been used
that q
lB � 1), and we obtain the i! f rate:
�2�= �h�

P
qjMifj

2/�q2l2B=2Mx;� � �Z� � N�N � 1�=7N�
(for any N � 1), where

1=7 � 8�2�#2 � $2�M2
x;��ZK�q


�= �h3!2
cl

4
B: (10)

Here K stands for the Fourier component of the correla-
tor: K�q� � L2j’�q�j2=4�2.

The thermodynamically unstable state jfi �
jN � 2; 1;q
i turns to a state jN � 2; 1;q0i in a time
which is much shorter than 7 (due to phonon emission),
where q0 takes the lowest possible nonzero value.
Relevant values of q0 are determined by the SRP field.
Indeed the SE interaction with the SRP incorporates the
energy Ux�SRP � ql2B�=� (the nonzero SE possesses the
dipole momentum el2B�q� ẑ� [11]). The Eq & Ux�SRP

condition determines the inhomogeneous uncertainty of
the nonzero SE momentum:

0< q0 & Mx;��=�: (11)

It is believed that q0 � q
, i.e., the ‘‘quasizero’’ kinetic
206804-3
energy �q0lB�
2=2Mx;�, restricted to the value T
 �

Mx;���lB=��2 is considered to be negligible in compari-
son with �Z [see the conditions (3)].

To solve the problem in a complete form, we obviously
have to study the general state of the type

jN;M1;M2; . . . ;MKi � �Qy
q01

�M1�Qy
q02

�M2 � � �

� �Qy
q0K

�MK jNi: (12)

All the wave vectors q0k are assumed to satisfy the
condition (11). We will also use for this state a shorthand
notation jN;Mi, whereM �

PK
k Mk is the total number of

the nonzero SEs. In the framework of our approach the
state (12) is an approximate eigenstate of a QHF having
energy �N �M��Z and spin numbers Sz � N�=2 � N �

M and S � N�=2 �M. These are calculated with help of
Eqs. (6) and (8) [the value of Sz is the exact one, but
Ŝ2jN;Mi � �N�=2 �M�2�jN;Mi � j~"i�, where R�~"� is
small compared with R�N;M�]. The state j0;Mi can be
treated as a ‘‘thermodynamic condensate’’ (TDC) which
arises if M is larger than the critical number of nonzero
SEs. The latter may be estimated (cf. Ref. [3]) and in our
case (3) it is at least smaller than N�Mx;�T. Meanwhile,
M is determined by the spin S of the system; therefore at a
given M � N�=2 � S we find that below some threshold
temperature the nonzero SEs necessarily form a TDC. For
macroscopically large N and M, the state (12) hence
features a coexistence of GC and TDC, describing a
microscopic nature of the intermediate QHF state. Of
course specific values q0k as well as specific distribution
given byMk numbers have no physical meaning. The final
results should depend only on M and N.

The rate dN=dt is determined by the 2X0 ! Xq
 �!

Xq0
� process (which presents a GC depletion with a si-

multaneous ‘‘flow’’ to TDC) and by the X0 � Xq0
!

Xq
 �! Xq0
0
� one. The rate dM=dt is also formed by the

2X0 ! Xq
 �! Xq0
� transition (which provides a TDC

evolution) and by the Xq0
� Xq0

0
! Xq
 �! Xq00

0
� one (de-

termining a TDC depletion). [Values of q0; q00 and q000
belong to the region (11).] The equations are derived
again with the help of the Fermi golden rule and Eq. (6)
(with vanishing .12 there):

dn=dt � ��2�nn ��nm�=7;

and dm=dt � ��nn ��mm�=7;
(13)

where the notations n � N=N� and m � M=N� are used
for ‘‘reduced’’ quantum numbers,
�nn �
jhM;N � 2jQq
Q�q
 jN;Mij2

R�N;M�R�N � 2;M� 1;q
�
�
N4R�N � 2;M� 1;q
�

N2
�R�N;M�

�
1 �O

�
m
nN�

�	
;

�nm �
X
k

jhM1; . . . ;Mk � 1; . . . ;MK;N � 1jQq
�q0k
Q�q
 jN;Mij2

R�N;M�R�N � 1;M;q
�
�

4M2N2R�N � 1;M;q
�

N2
�R�N;M�

�
1 �O

�
K
N�

�	
;

and
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�mm �
X
k<i

jhM1; . . . ;Mk � 1; . . . ;Mi � 1; . . . ;MK;NjQq
�q0k�q0i
Q�q
 jN;Mij2

R�N;M�R�N;M� 1;q
�
�

2M4R�N;M� 1;q
�

N2
�R�N;M�

�
1 �O

�
K
N�

�	
:

[R�N;M� 1;q
� is the norm of the Qy
q
 jN;Mi state.] In

this way we find that the norms appearing in these equa-
tions satisfy the conditions R�N;M� 1;q
�=R�N;M� �
r, R�N � 1;M�=R�N;M� � Nrn, and R�N;M1; . . . ;Mk�
1; . . . ;MK�=R�N;M��Mkrm, so that

�nn �
n2r

r2
n
; �nm �

4mnr
rnrm

; �mm �
2m2r

r2
m
; (14)

where r, rn, and rm are determined by the equations

1 �
1 � n� 2m

rn
�O

�
m3

nK

�
;

1 �
1 � 2n� 2m

rm
�
n2

r2
n
�O

�
m2

�
;

1 �
1 � 2n� 2m

r
�

4mn
rnrm

�
n2

r2
n
�

2m2

r2
m

�O
�

1

N�

�
:

(15)

The last terms in Eq. (15) would depend just on the
specific set of the Mk numbers. We can therefore calculate
rm and obtain the final result only in the m� 1 case.
Meanwhile, the values of m�t� are determined by the
initial deviation n�0�: in particular, at n�0� � 0:5 we
find that max�m� 	 0:1. Thus we should put r � rn �
rm � 1 in �mn and �mm, but rn � 1 � n and r � �1 �
n�2 in �nn. This yields the results n�t� � 1=�2n�0��
�t=7�2 � 2�t=7� � 1=n�0�� and m � n�t�n�0�t=7.

The time dependences are shown in Fig. 1. We stress
once again the nonexponential behavior, which could be
just an observable manifestation of the existence of the
SE condensates. The gap between the dashed and dotted
lines in the inset reflects the reduction of the spin modu-
lus during the relaxation. One sees that it is rather small
even at significant initial deviation from the ground sym-
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FIG. 1. Time dependences of j�Szj=N� � n�t� �m�t� and of
j�Sj=N� � m�t� are shown in the main picture for n�0� �
j�Sz�0�j=N� � 0:455. The vectors S�t� (normalized to N�) at
equidistant moments of time are plotted in the inset with step
7. The dotted line is the arc with radius S0 � N�=2.
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metry. It is exactly this favorable circumstance that en-
abled us to find an approximate but analytical result.

Let us discuss the time 7 governing the GM break-
down. Earlier calculations based on the phonon mecha-
nism of the relaxation give the SR times>1 �s [3], which
are in essential discrepancy with the relevant measure-
ments. Now we have studied a disorder relaxation channel
and report that under realistic conditions the character-
istic time (10) should be weakly dependent on magnetic
field and is estimated to be 7 	 70 exp�q
2�2=4� � 70 �

exp�=B3=2�, where 70 � 10–100 ns and =� 0:01 T�3=2.
This value brings the theory substantially closer to the
available (but still indirect) experimental data [1,2].

The GM could probably be created by microwave
pumping at the ESR frequency �Z= �h. This should cause
the QHF spin to ‘‘precess’’ without changing the S modu-
lus. As to observing the SR with time, one can think that
the optical technique [2] is relevant in the case.
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