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The intrinsic anomalous Hall effect in metallic ferromagnets is shown to be controlled by Berry
phases accumulated by adiabatic motion of quasiparticles on the Fermi surface, and is purely a Fermi-
liquid property, not a bulk Fermi sea property like Landau diamagnetism, as has been previously
supposed. Berry phases are a new topological ingredient that must be added to Landau Fermi-liquid
theory in the presence of broken inversion or time-reversal symmetry.
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Renewed interest in the anomalous Hall effect (AHE)
in metallic ferromagnets has lead to a reinterpretation
of the classic Karplus-Luttinger formula [1] for the
‘‘anomalous velocity’’ in terms of the Berry curvature
of occupied electronic Bloch states [2,3]. This gives an
intrinsic contribution to the Hall conductivity in the low-
temperature clean limit of metallic ferromagnets when
the quasiparticle lifetimes become long, and now appears
to be the dominant contribution to the AHE [4,5].

The expression [1–3] for the intrinsic Hall conductiv-
ity of metals with broken time-reversal symmetry has the
all the appearance of a ‘‘bulk’’ band structure property
that depends on all the filled electronic states, not just the
ones at the Fermi level. However, this seems at odds with
the spirit of Landau’s Fermi-liquid theory, which holds
that charge transport in metals involves only quasipar-
ticles with energies within kBT of the Fermi level.

In this Letter, I show that, despite appearances, the
nonquantized part of the intrinsic Hall conductivity is
completely expressible in terms of Berry phases [6] of
quasiparticles moving on the Fermi surface, and thus
fully consistent with Fermi-liquid theory. This exposes
a new topological ingredient that must be added to Fermi-
liquid theory unless both inversion and time-reversal
symmetry are present: quasiparticle Berry phases.

The ‘‘anomalous velocity’’ is an extra term [7,8] in the
semiclassical equations of motion of a Bloch electron in
weak electric and magnetic fields; ignoring Zeeman cou-
plings, these are
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where Fab � raAb �rbAa � �abcB
c is the magnetic

flux density written as an antisymmetric tensor, ra �
@=@xa, "n�k� is the energy of a Bloch electron in band n,
ra
k � @=@ka and F ab

n is the antisymmetric ‘‘Berry cur-
vature’’ tensor in k space, described below. The anoma-
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lous velocity in (2) is the k-space dual of the Lorentz
force.

If one writes the electron occupations hnkni as
n0n�k; �� � �nkn, where n0n�k; �� is the ground-state oc-
cupation function at chemical potential �, the linear
current response to a uniform electric field E (with
B � 0) is
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where N is the number of primitive unit cells, which have
volume �. Here �ab0 ��� is an intrinsic ground-state prop-
erty describing a dissipationless Hall conductivity
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This also controls the low-temperature limit of the ther-
mal Hall conductivity �ab (Righi-Leduc effect) and the
Peltier coefficient �ab; their ‘‘intrinsic’’ parts are

�ab0 ��� �
�2

3

k2BT

e2
�ab0 ���; �ab0 ��� � e

@�ab0 ���
@�

: (5)

A heat current JaQ � T�ab0 Eb flows with the Hall current.
If time-reversal symmetry is present, the electronic

bands have the property

"n��k� � "n�k�; F ab
n ��k� � �F ab

n ��k�; (6)

the sum (4) cancels, and the intrinsic Hall conductivity
vanishes. If inversion symmetry is also unbroken,
F ab

n ��k� � F ab
n �k�, and the Berry curvature vanishes.

The Berry curvature is obtained from a ‘‘vector poten-
tial’’ derived from the 1-particle Bloch states j n�k�i:
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The last equation is the divergence of the k-space Berry
curvature field F ab

n �k�: it is divergence-free except for
quantized ‘‘monopole’’ sources with a ‘‘charge quantum’’
2�, which are associated with band degeneracies. These
occur at isolated k points: in complex Hermitian eigen-
problems, it is sufficient to vary three parameters (here,
the components of k) to encounter degeneracies.

Assuming that the one-electron energy "n�k� is non-
degenerate, the wave functions are completely defined,
except for an arbitrary phase factor. If both time-reversal
and inversion symmetry are present, this can consistently
be chosen real, but otherwise, is an arbitrary complex
factor that can vary continuously with k. The Berry
vector potential Aa

n�k� depends on this ‘‘gauge choice’’
but the curvature F ab

n �k� is a well-defined gauge-
invariant quantity with physical significance. The Berry
phase [6] for a closed path � is also gauge invariant:

expi"n��� � expi
I
�
Aa

n�k�dka: (10)

The integral is the curvature flux linked through �: the
2� ambiguity of the Berry phase quantizes the ‘‘charge’’
of the monopole sources of the curvature field.

In a 3D band structure, the integral over the Brillouin
zone (BZ) of the Berry curvature of a nondegenerate band
is a topological invariant [9] that is a generalization of the
better-known 2D Chern number [10,11]

1

2�

Z
d3kF ab

n �k�PBZ�k� � Cn�abcGC
cn; (11)

where Cn is an integer Chern number, 1=2� times the
integral of the Berry curvature over a compact 2D sur-
face, e.g., a 2D BZ (a torus), and GC

n is a primitive
reciprocal lattice vector; PBZ�k� � 1 inside the BZ, 0
outside it.

The intrinsic Hall conductivity may be parametrized
as �ab0 � �e=0��abc�Kc=2��, 0 � h=e, where k is di-
mensionally a wave vector: in one-electron band theory,
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If band n is completely below the Fermi level, it contrib-
utes a quantized amount CnGC

n to k. This produces an
integer quantum Hall effect (QHE) with ‘‘filling factor’’
' � Cn on the lattice planes indexed by GC

n .
The QHE is usually discussed in the context of strong

magnetic fields where the electronic states are split up
into Landau levels, so it might be wondered how ‘‘simple’’
Bloch electrons could exhibit a QHE without Landau
levels. In fact, only broken time-reversal symmetry is
required: the possibility of a B � 0 ‘‘zero-field QHE’’
was first demonstrated in Ref. [12], using a model that, in
retrospect, exhibits both a nonmetallic QHE phase and a
metallic AHE phase.

It will be useful to understand the process by which the
Chern invariants of a 3D band structure can change.
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While a band remains nondegenerate, its Chern invariant
is ‘‘quantized’’ to be a reciprocal lattice vector. As a
control parameter is varied, two bands may come into
contact at some point in the BZ, and this initial degener-
acy point then subsequently splits into two ‘‘Dirac point’’
singularities (near which the energy dispersion is linear).
The bands are now tightly coupled by a ‘‘Berry flux loop’’
where Berry curvature flux 2� passes from one band to
the other through one Dirac point, then returns through
the other one. There is a striking analogy to the idea of
‘‘wormholes’’ connecting different universes, where here
the two ‘‘universes’’ are Bloch bands, and ‘‘space’’ is
k space. Each band has one positive and one negative
monopole source of Berry curvature; at each Dirac point
the two bands have opposite-sign sources. Eventually,
after relative displacement by a reciprocal lattice vector
G, the monopoles may recombine, allowing the bands to
split apart. This process conserves the sum of their in-
variants, but individually they change by �G.

It is useful to first examine (4) in the simpler 2D case.
Then �xy0 � 'e=0, where ' �

P
n'n, and

'n��� �
1

2�

Z
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n �k�PBZ�k�nn�k; ��: (13)

For simplicity, assume that the occupied region does not
touch the Brillouin zone boundary (BZB), and drop
PBZ�k�. Using the Berry vector potential representation
and integrating by parts gives
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which is clearly a Fermi-surface integral if the band is
partially filled, since n0n�k� has a step discontinuity at the
Fermi surface, and is constant everywhere else. If the
Fermi surface is a simple closed loop, this can be recog-
nized as the integral giving the Berry phase "F for an
adiabatic path around the Fermi surface (the k-space
version of the Bohm-Aharonov effect)

'n �
1

2�
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n�kF�dkFa �
"F

2�
: (15)

Since the Berry phase is ambiguous by a multiple of 2�,
only the nonquantized part of the intrinsic Hall conduc-
tivity is determined at the Fermi surface. If the system
has evolved adiabatically along some path in a parameter
space from one with time-reversal symmetry, the QHE
can be determined from the history of "F during that
process.

Armed with the insight that the AHE is a Fermi-
surface property, I now examine the 3D problem. In
general, there may be multiple sheets S� of the Fermi
surface, with both simple and multiply connected topol-
ogy, with pieces ‘‘glued together’’ at degeneracy points
where a line of high-symmetry intersects the surface, or
along lines where a plane of high-symmetry intersects it;
if time-reversal symmetry is unbroken, there may also be
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Kramers degeneracy [13]. Complexes of intrinsically con-
nected sheets k���F �s�, where s � fs1; s2g is a surface pa-
rametrization, will be referenced by a single label �,
specified implicitly if s 2 S�. The outward normal unit
vector n̂�s� is also the direction of the Fermi velocity.

The key Fermi-surface property is the Luttinger sum
rule relating particle number to Fermi-surface volume.
The Fermi-surface geometry fixes the particle density
modulo integer multiples of the ‘‘density quantum’’ +0 �
1=� associated with filled bands. The change in particle
density �+��r� associated with a local fluctuation
�kF�r; s� � r’�r; s� [where ’�r; s� is the quasiparticle
phase] is just proportional to the k-space volume swept
out by the changing Fermi surface:

@�kF�s� � @'kF�s� � ‘�'�s�n̂�s�; (16)

�+��r� �
Z
S�

ds� ^ds'

�2��3
‘�'�s�n̂�s� �r’�r;s�; (17)

Z
S�

ds� ^ ds'

�2��3
‘�'�s�n̂�s� � +0��R.: (18)

Here @� � @=@s�; a nonzero integer �� signals a ‘‘chiral
anomaly’’: the system then has a quasi-1D character
where the primitive real-space lattice vector R. defines
a special direction of lattice lines along which quasi-1D
electrons predominantly move (such a band structure may
also have nonchiral Fermi-surface sheets.)

The change in density �+� if the Fermi-surface sheet �
is rigidly displaced by a constant shift �kF is ��+0R. �

�kF. Note that the absolute value of kF�s� is not invariant
under position-space gauge transformations kF ! kF �
�e= �h�A�r� and only the relative displacements (modulo
reciprocal lattice vectors) between Fermi vectors are
physically meaningful. Gauge invariance requires that
the total Fermi-surface chiral anomaly must vanish.
Typical Fermi-surface sheets are nonchiral but the possi-
bility of chiral sheets needs to be kept in mind; the integer
�� is a measure of how many distinct chiral sheets are
glued together.

It is straightforward to repeat the integration by parts
to expose the nonquantized part of the 3D intrinsic Hall
conductivity as a Fermi-surface property. The Berry vec-
tor potential and associated gauge-invariant Berry cur-
vature for paths restricted to lie in a surface k�s� are

A ��s� � Aa�k�s��@�ka�s�; F �' � @�A' � @'A�:

(19)

The surface integral that results from integration by
parts of the band-n contribution is over a surface Sn that is
divided into a set of one or more outward-oriented com-
pact surfaces enclosing occupied regions within the BZ:

K n �
1

2�

Z
Sn
ds� ^ ds'F �'�s�k�s�: (20)
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Some parts of Sn are on the Fermi surface, but there may
also be contributions from states below the Fermi level
which are on the BZ boundary (BZB). The Fermi surface
of band n will be divided into one or more disjoint
oriented surfaces Sn�, and the intersections of these
with the BZB define a set of conjugate pairs of closed
directed pathsCn�i� which have Berry phases �"n�i; the
‘‘�’’ path is displaced relative to its partner on the oppo-
site side of the BZB by a primitive reciprocal lattice
vector Gn�i. The contribution to the integral (20) from
conjugate BZB intersections is "n�iGn�i=2�, which can
be apportioned equally to the ‘‘�’’ and ‘‘�’’ paths.

Eliminating the integrals over the BZB allows band
indices n to be dropped, and

P
nKn can be written (mod-

ulo G) as a sum
P
�K� of Fermi-surface integrals

K � �
1

2�

Z
S�
d2F kF �

1

4�

X
i

G�i

Z
@Si�

dA; (21)

where d2F � F �'�s�ds
� ^ ds' is the Berry curvature 2-

form and dA is the connection 1-form A��s�ds�; @Si�
are the 1-manifolds where S� intersects the BZB, across
which kF�s� jumps by G�i. These boundary terms are
Berry-gauge dependent, but if S� is nonchiral, the BZ
can be chosen so all @Si� are closed paths, and the gauge
ambiguity is an (unknown) quantized QHE contribution.
[If S� is chiral, (21) is valid in a Berry gauge where
A��s� is periodic, and the boundary terms cancel.]

The integral of 1=2� times the Berry curvature over
Fermi-surface sheet � defines an integer Chern number
C�. If a gauge transformation shifts kF�s� by a constant
�kF, k� changes by C��kF. Gauge invariance requires
that the total sum of Fermi-surface Chern numbers must
vanish.

If a nonchiral compact piece of Fermi surface has
nonzero Chern number, it must enclose a source of
Berry curvature, and has a hidden ‘‘wormhole’’ connec-
tion through which ‘‘spectral flow’’ can occur. Consider
two bands linked by a ‘‘Berry flux loop’’ through a pair of
Dirac points, one below the Fermi level, the other above it
(both time-reversal and inversion symmetries must be
broken). A particlelike Fermi surface with Chern number
C � �1 surrounds the lower Dirac point, and a holelike
one with opposite-sign Chern number surrounds the other.
A ‘‘spectral flow’’ process driven by spatial inhomogene-
ities can ‘‘pump’’ states into a band through one Dirac
point and out through the other, conserving the total
number of states per band. States that flow carry their
occupations with them: the volumes of the holelike and
particlelike Fermi surfaces shrink or expand by the same
amount, conserving total charge.

The additional Berry phase terms in (21) are there for a
very concrete reason: the choice of the Brillouin zone
defined by PBZ�k� is yet another kind of arbitrary gauge
choice: since kF�s� is defined to be in the BZ, however it is
chosen, there must be BZB lines on a multiply connected
surface across which kF�s� jumps discontinuously back
206602-3
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into the BZ. The Berry phase counterterms merely guar-
antee that the value of K� is unchanged by any continuous
deformation of the standard BZ into any other primitive
cell.

The Hall conductivity also controls the charge density
+e � e�+ induced when a uniform magnetic flux density
is applied, keeping the Fermi energy � fixed:

lim
B!0

@+e
@Fab

���������
� �ab0 ���; Fab � �abcBc: (22)

Such a Streda-type formula [14] should hold separately
for each Fermi-surface sheet. This can easily be found
from semiclassical quantization with a Fermi-surface
Berry phase. For B � Bn̂ (technically parallel to a lattice
translation), let the set of Fermi-surface orbits in the
k-space plane n̂ � k � k have cross-sectional areas A��k�
and Berry phases "��k�.

Recall that �ab0 is parametrized by k�: here

n̂ �K� �
1

2�

Z 1

�1
dkPBZ�kn̂�"��k�: (23)

The semiclassical quantization condition is

A��kiF��‘
2
B �"��kiF�� � 2�

�
ni� �

1

2

�
; (24)

where ‘2B � �h=jeBj, and ni� are integers. The kiF� (ordered
so kiF� > kjF� for i > j) are the Fermi momenta of sets of
1D Fermi gases of particles on sheet �, moving along
field lines with a 2D density �2�‘2B�

�1 (one line per flux
quantum). The induced charge density is completely de-
termined by Fermi-surface geometry:

+e �
e

�2��3
X
�i

1

2
�Ai� � Ai�1

� ��ki;i�1
� � vi;i�1

� ; (25)

where Ai� � A��kiF�� � �eB= �h�"��kiF��, v
i;i�1
� is the in-

tegral of A��k� from kiF� to ki�1
F� , and �ki;i�1

� � ki�1
F� �

kiF�. The Streda formula (23) is now easily obtained when
B! 0. Note the differences between density and energy
shifts due to Landau quantization: the latter derive from
changes to states deep below the Fermi level, and Landau
diamagnetism is not a Fermi-surface effect.

In summary, the intrinsic Hall conductivity of a metal
with broken time-reversal symmetry can be written as
�ab0 � �e=0��

abc�Kc=2��, 0 � h=e. I have shown that
the nonquantized part of the wave vector K (i.e., the part
modulo a reciprocal vector G) is a topological Fermi
surface property given by a sum of terms K� (21) asso-
ciated with each distinct Fermi-surface sheet. Separate
batically conserved currents are associated with each
such sheet (or group of sheets mutually coupled by
‘‘wormholes’’): this generalizes the ‘‘extra’’ conservation
laws at each distinct chiral Fermi point of a 1D Luttinger
liquid. In the absence of BCS pairing processes, break-
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down of these extra conservation laws can occur only
through nonadiabatic impurity or surface scattering. A
‘‘topological Fermi liquid theory’’ that includes Berry
phases of quasiparticles adiabatically moving on Fermi
surface manifolds must now be developed.
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Note added.—The simplicity of the Fermi-surface for-
mula (21) strongly suggests that it is a fundamental Fermi
liquid property, also valid in an interacting system, like
the relation between electron density and Fermi surface
volume [used above to derive (22)]. As I will describe
elsewhere, this is indeed the case: the key point is that
(only) at the Fermi surface, the Bloch states j n�kF�s��i
retain their meaning as the zero-mode eigenfunctions
of the inverse (exact) one-electron propagator
G�1�kF�s�; ! � 0�, which in interacting Fermi-liquid
theory remains Hermitian at T � 0. The formal proof
uses a 3D version of the Ward-Takahashi identity used
previously to relate the 2D integer QHE Hall conductance
to the exact (interacting) one-electron propagator [15]. I
thank P. B. Wiegmann for bringing Ref. [15] to my
attention.
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