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Josephson Junction as a Detector of Poissonian Charge Injection
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We propose a scheme of measuring the non-Gaussian character of noise by a hysteretic Josephson
junction in the macroscopic quantum tunneling regime. We model the detector as an (under)damped LC
resonator. It transforms Poissonian charge injection into current through the detector, which samples
the injection statistics over a floating time window of length �Q=!J, where Q is the quality factor of
the resonator and !J its resonance frequency. This scheme ought to reveal the Poisson character of
charge injection in a detector with realistic parameters.
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FIG. 1. The scheme of the threshold measurement and the
model. The current through the Josephson junction (or a dc-
SQUID) is determined by those through the scatterer (I1) and
the ideal bias line (I2), respectively. Switching to the normal
state of the Josephson junction is signaled by a nonzero voltage
V at the output of the amplifier. The resonator model and the
charge injection are discussed in the text.
Presently there is considerable effort on characterizing
and measuring the statistics of electrical current and the
non-Gaussian nature of its fluctuations in mesoscopic
conductors [1,2]. The discrete nature of charge injection,
e.g., in tunnel junctions, with typically Poissonian statis-
tics can be revealed by studying not only the average
current hIi and its variance h�I2i, unlike in the case of
normally distributed current, but higher moments also,
most notably the third (central) moment h�I3i. Normally
these higher moments introduce very small signals and
the filtering requirements are strict, because of which it is
very hard to measure them (see, e.g., [3,4]). There is,
however, one recent experiment which succeeded in dem-
onstrating the existence of the nonvanishing third mo-
ment in transport through a nonsuperconducting tunnel
junction [4], and which thereby provided valuable infor-
mation on, e.g., the distribution of the conduction chan-
nels of the sample. The measurement required very long
averaging times. Therefore, alternative techniques to col-
lect more information, and perhaps eventually to deter-
mine further higher moments, are definitely needed.
Already in 1994 Lesovik proposed to probe non-
Gaussian fluctuations via frequency drift in Josephson
generation [5]. More recently Tobiska and Nazarov [6]
introduced an overdamped Josephson tunnel junction
(array) as a threshold detector to measure such full count-
ing statistics (FCS) making use of rare over-the-barrier
jumps arising from current fluctuations. The nearby on-
chip detector is a definite benefit of this proposal due to its
natural high bandwidth. Yet they considered the limit
where tunneling is perfectly suppressed whereby the
setup becomes experimentally less accessible. In our pro-
posal we consider an underdamped single Josephson
junction (or a dc-SQUID) in the macroscopic quantum
tunneling (MQT) limit. We demonstrate that the experi-
mental complications of the proposal [6], e.g., the need of
a multijunction Josephson junction array, and the fact that
the escape threshold is more difficult to measure in an
overdamped junction, are overcome in our scheme, and
show that the effect of higher moments is pronounced
0031-9007=04=93(20)=206601(4)$22.50 
using a threshold detector with parameters deduced from
earlier MQT experiments (see, e.g., Ref. [7]).

We discuss a simplified model where charges are in-
jected according to Poisson statistics [8] on a Josephson
junction, which in turn is described by a damped har-
monic oscillator [LCR, or a linearized resistively and
capacitively shunted junction (RCSJ) model]. We show
how this environment performs a conversion from dis-
crete (charge) statistics into continuous (current) statis-
tics. The proposed scheme is sketched in Fig. 1. The two
injecting lines carry currents I1 and I2, respectively. I1 is
generated by a voltage bias across the scatterer (for ex-
ample, a tunnel junction), and I2 runs in a directly con-
nected line to be discussed below.We neglect the influence
of the transmission line connecting the injecting lines
and the measuring Josephson junction. Capacitance of the
injecting junction can be included in the RCSJ capaci-
tance, and similarly the additional injection line (I2) and
the connection to the voltage amplifier can be modeled as
a parallel inductance, which may reduce the resolution of
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the detector as will be discussed at the end. For practical
implementations we depict the detector as a dc-SQUID
with critical current tunable by magnetic flux �.

The detector is driven by elementary charges e�

‘‘dropped’’ on the LCR resonator at time instants tj [9].
Therefore, each event poses an elementary current
e���t� tj� into the resonator such that I1�t� �

P
je

���t�
tj� as illustrated in Fig. 1. Here ��t� is the Dirac delta
function. (Alternatively we could consider a voltage step
of height e�=C at each instant tj.) Our task is to evaluate
the current I and its moments through the junction (in-
ductor L). The elementary current i�t; tj� through the
Josephson junction at the time instant t is given in the
case of an underdamped resonator (quality factor Q 	

R=
����������
L=C

p
> 1=2) by
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Here, !J � �LC��1=2 is the plasma frequency of the junc-
tion and ��t� is the Heaviside step function. Analogous
results for overdamped case (Q< 1=2) exist, but they are
not considered explicitly here, since the detector is as-
sumed to switch from supercurrent state to resistive state.
Therefore we assume Q> 1=2 in what follows unless
otherwise noted. It is interesting to see some properties
of these elementary oscillations. At the time instant tj all
charge e� is stored in the capacitor C, whereafter it
performs damped oscillations at (angular) frequency
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!J. On integrating ij�t� one finds a consistent result:R
�1
�1 i�t; tj� � e�.
I1�t� induces current I�t� through the Josephson junc-

tion that can be expressed, on the basis of linearity, as the
sum of the elementary currents of Eq. (1):

I�t� �
X
j

i�t; tj�; (2)

where now the time instants tj are perfectly uncorrelated.
One can numerically simulate the current following the
Poisson principle: divide time into very small intervals �t
and set the probability p
 1 for one charge to tunnel
during this interval. No multiple events in any of the �t
intervals are allowed. The average current 
I, p, and �t are
related through 
I � pe�=�t. Figure 2 illustrates results of
simulation with two different values ofQ, the time unit is
!�1

J , and 
I � 100, in units e�!J. The initial rise and
oscillations are due to the fact that the injection of
charges is suddenly initiated at t � 0. At larger values
of Q the junction tends to oscillate at (angular) frequency
!J, but it is driven by random events and thereby
dephased.

Let us next consider the various moments of I�t�. We
take a long enough time interval � such that the interest-
ing instant t at which we want to evaluate the moments of
current satisfies t � �. Now we consider different ensem-
bles of instants tj, such that N charges are injected within
�, and then weight all these configurations by the Poisson
probability PPoisson�N�. Since all the j � 1; . . . ; N events
are uncorrelated and evenly distributed over 0 � tj � �,
we may write for the nth moment of I�t�:
hIn�t�i �
X1
N�1

PPoisson�N���N
Z �
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0
� � �

Z �

0
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n
: (3)
It is straightforward to integrate for hIn�t�i using i�t; tj� of
Eq. (1). Below we summarize results for the three lowest
moments of I�t�. The average current reads

hI�t�i � 
I
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Here we have identified 
I � e�hNi=� 	 e�
� 
P

1
N�1NPPoisson�N�, which is the asymptotic value of

hI�t�i on t! 1. The thick lines in Fig. 2 show the result
of hI�t�i using Eq. (4), which indeed seem to follow
the mean of the simulated curves. In what follows, we
drop out the argument t, and consider only results after
the initial transient, i.e., t� 2Q=!J. The second raw

moment reads hI2i � Qe�!J

2

I � e�2

�2
hN�N � 1�i, where
hN�N � 1�i 	
P

1
N�1N�N � 1�PPoisson�N�. The more in-

teresting second central moment, the variance h�I2i 	
h�I � hIi�2i, then reduces to

h�I2i �
Qe�!J

2

I: (5)

After a straightforward derivation we similarly obtain the
third central moment, h�I3i 	 h�I � hIi�3i, reading

h�I3i �
2

3�1� 2=Q2�
�e�!J�

2 
I: (6)

According to Eq. (5), the shot noise of the injecting
junction, 2e� 
I, is amplified by the quality factor of the
resonator over the band whose width is �!J, the (maxi-
mum) response frequency of the detector. A measure of
the non-Gaussian character of the current distribution is
its skewness, defined as S � h�I3i=h�I2i3=2, which, ac-
cording to Eqs. (5) and (6), reads
206601-2



FIG. 2. Simulated I�t� (thin solid lines) with the following
parameters: 
I � 100 and p � 0:01, and, with two values of
quality factor, Q � 1 and Q � 10, respectively. Thick solid
lines are expectations of hI�t�i according to Eq. (4).
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S �
25=2

3�Q3=2 � 2Q�1=2�
�e�!J�

1=2 
I�1=2: (7)

Results (5)–(7) hold also in the overdamped case (Q<
0:5). It is interesting to note some general features of S in
Eq. (7). The non-Gaussian ‘‘strength’’ increases, in accor-
dance with the central limit theorem, with decreasing 
I
(less events recorded). The detector exhibits a memory of
events over a time �2Q=!J in the underdamped [1=�Q!J�
in the overdamped] case, and, therefore, the skewness
attains its maximum value close to the crossover between
underdamped and overdamped behavior, Q ’ 1: here the
memory of the detector is shortest, and it responds to
only a small number 
n of Poisson distributed events
through the scatterer. In the example discussed below,

n� � 
I=e���2Q=!J� ’ 40.

Figure 3 shows an example of the simulated (3
 105

repetitions) current distribution at the time instant !Jt �
40 (far enough after the initial transient, !Jt� 2Q) for
FIG. 3. Simulated current distribution at !Jt � 40, Q � 2,
and 
I � 10e�!J. The main frame shows the number of counts
(out of 300 000) in solid dots, and the solid line is the best
Gaussian fit to it. The inset shows the same results but as the
true distribution, � counts=300 000, and on linear scale.
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the injected current with 
I � 10e�!J and for a detector
whose Q � 2. The main frame with a logarithmic verti-
cal scale shows the number of counts (in solid circles),
demonstrating how the simulation differs from the
Gaussian fit shown by the solid line. There are more hits
at high currents in the simulation as compared to the
normally distributed events as one would expect. The
same is shown as the true distribution (counts divided
by 3
 105) on a linear scale in the inset. Table I gives a
comparison between the simulated values and the theo-
retical predictions [Eqs. (4)–(6)] of the three lowest mo-
ments. The correspondence is satisfactory, although the
variance h�I2i falls outside the 1� uncertainty margin.

Next we make a judgment of whether such a threshold
detector provides a viable means to measure FCS. To this
end we need to consider the escape rates from the super-
current state. We assume low temperature T such that
thermally activated switching is suppressed. This is the
case when T < 
h!J=�2�kB�, which is an easily accessible
regime experimentally [10]. The escape rate in the MQT
regime in the presence of Gaussian noise has been dis-
cussed, e.g., in Ref. [11]. Here, we allow for more general
current statistics. Using the standard decay law we find
that the probability of escape is given by

P � 1� exp
�
�

Z t0��t

t0
��I�t��dt

�
; (8)

where �t is the duration of the current pulse starting at
t � t0 over which we monitor escape statistics. � is the
current dependent escape rate in the MQT process for
which one can find explicit expressions that depend on the
junction and circuit parameters [12]: � � A exp��B�,
where A � !

����������������

h!J�U

p
=�2� 
h� and B � s�U=� 
h!J�. �U

is the I dependent barrier height, and parameters ! and s
are Q dependent. They assume values ! � 12

�������
6�

p
and

s � 36=5 for large Q. For a pulse with �t� Q=!J we
may write

Rt0��t
t0 ��I�t��dt ’ h�i�t, where h�i 	R

�1
�1 ��I�p�I�dI. Here p�I� is the current distribution ap-

proximated, e.g., in Fig. 3. In the scheme of Fig. 1 the
average current 
I through the Josephson junction can be
generated by any combination of the two (average) cur-
rents 
I1 and 
I2 with the constraint 
I � 
I1 � 
I2. Of par-
ticular interest are the cases where 
I1 is either equal to 0
or has positive or negative values of equal magnitude. The
difference in the escape characteristics between the latter
two cases provides a measure of the asymmetry of p�I�
around its mean, the central topic of this Letter. Figure 4
TABLE I. Results.

Simulation Theory

hIi 10:01� 0:01 10.00
h�I2i 9:91� 0:03 10.00
h�I3i 4:65� 0:22 4.44
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FIG. 4. Escape probability P of a Josephson junction as a
function of the average current 
I through the detector under
different noise conditions. The shift between the solid and the
dashed lines arises from Poisson statistics of charge injection.
The dash-dotted line is the escape probability with the corre-
sponding Gaussian noise (same h�I2i). Escape in the ideal case
of noiseless current is shown by the dotted line.
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shows the escape histograms calculated under three such
conditions using trapezoidal current pulses of duration
�t � 100 $s [7,13]. We assume that the detector junction
has a critical current IC � 1 $A [L � 
h=�2eIC�], C �
0:1 pF, and other parameters and p�I� are as in Fig. 3.
(With these parameters �t� Q=!J.) We assume pure
MQTescape with low dissipation [11,12]. The histograms
are plotted as a function of average current 
I through the
detector driven by the two injection currents in different
proportions. The histogram shown by dotted lines corre-
sponds to no current fluctuations; i.e., all current is driven
through the ideal line ( 
I1 � 0). The solid line is for the
case when current through the scatterer and that through
the detector point in the same direction (j 
Ij �
j 
I1j � j 
I2j). With our circuit parameters 
I1 � �0:2IC.
The dashed line is for the case when current I1 points
opposite that through the detector (j 
Ij � jj 
I1j � j 
I2jj and

I1 � �0:2IC). The average shift of the 
I1 � �0:2IC his-
tograms with respect to the dotted line is due to the
variance of current, whereas the pronounced shift be-
tween the last two is the more interesting effect of non-
Gaussian current statistics.

We conclude with a few practical remarks. The scheme
presented here is simplified in many ways. First, we do
not take into account the (weak) dependence of the
plasma frequency (Josephson inductance) on I to keep
the discussion more phenomenological and transparent.
This is fairly well justified, for example, in the case of
Fig. 4, because all the relevant escape currents are smaller
than 0:8IC, and !J / �1� I=IC�1=4. Second, the escape
histograms calculated assume low dissipation, which is
not truly the case. The influence of dissipation on the
MQT rate through environmental noise can be taken
into account by a minor scaling of ! and s parameters
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[11], and again to keep analysis on the basic level, we omit
this since the effect is weak even when Q � 2. Third, we
assume that the injected charges do not produce current
pulses either in the I2 current line or in the line to the
voltage amplifier. This can be realized by large induc-
tance (Lext) in these lines, which in practice means long
and narrow wires. If Lext � L, our argument is justified.
Finally, the presented model is based on a classical de-
scription of the circuit dynamics: this is a valid starting
point in the case of a tunnel junction scatterer whose
tunnel resistance RT � 
h=e2.
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