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Bose-Einstein Condensation and the Glassy State
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The distinction between a classical glass and a classical liquid is difficult, since both are disordered.
The difference is in the fact that a glass is frozen while the liquid is not. In this Letter an equilibrium
measure is suggested that distinguishes between a glass and a liquid. The choice of this measure is based
on the idea that in a system which is not frozen symmetry under permutation of particles is physically
relevant, because particles can be permuted by actual physical motion. This is not the case in a frozen
system. In this Letter it is shown how to generalize naturally the quantum mechanical concept of Bose
condensed fraction to classical systems in order to distinguish between the glass and the liquid. It is
finite in the liquid and zero in the frozen state. The actual value of the condensed fraction in the liquid
may serve also as a measure of the glassiness in the liquid.
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The freezing of a liquid into an ordered solid is char-
acterized by the appearance of Brag peaks in x-ray
scattering from the solid at momenta corresponding to
the reciprocal lattice. The strength of the Brag peaks is
thus an equilibrium parameter that distinguishes between
the liquid state and the state of a periodic solid. When
dealing with a glass the situation is different, because the
structure factor that is measured by x-ray scattering is
similar to that of a liquid. The usual measures that dis-
tinguish a liquid from a glass are various transport pa-
rameters, such as the diffusion constant of a tagged
particle in the glass or the viscosity of the glass versus
the viscosity of the liquid [1,2]. Both are based on the fact
that a glass is frozen while a liquid is not. In the following,
I will suggest a measure that also distinguishes between
the frozen and unfrozen states but is basically an equilib-
rium measure. This means that the glass I will be con-
sidering is not everyday off equilibrium glass but rather
thermodynamic glass, whose existence at finite tempera-
ture is still debated [3–5]. Since it is sometimes extremely
difficult to realize that a given glass is not in equilibrium,
the concepts developed in the following may prove useful
albeit not in a precise sense even for off equilibrium glass.
The idea behind this suggestion is that in a liquid of
classical identical particles the symmetry under permu-
tations of particles is physically relevant. Namely, two
configurations of the system that differ only in permuta-
tions of the particles can be connected by physical con-
tinuous trajectories in configuration space which lie
entirely in a thermodynamically accessible region of
configuration space. Namely, the intermediate configura-
tions of the system are of the same nature as the initial
state. In a glass, on the other hand, while symmetry under
permutations still formally exists, it seems not to be
relevant. The reason is that continuous paths in configu-
ration space connecting two configurations that differ by
a permutation which involves a large number of particles
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must have intermediate configurations which differ very
much from an allowed glass configuration.

The natural parameter that distinguishes quantum sys-
tems in which the symmetry under permutations is physi-
cally relevant from systems where it is not relevant is the
Bose condensed fraction. (I will not go here into the finite
temperature description of the quantum mechanical sys-
tem, since the analogy to be used here between the
quantum mechanical and classical systems is between
the quantum mechanical ground state and the classical
distribution function at a finite temperature.) Consider
first this analogy. The following set of Langevin equa-
tions describes the stochastic over-damped motion of a
classical system consisting of N particles and enclosed in
a cube of volume V with periodic boundary conditions:

d
dt
xki � ��

@

@xki
W � �ki ; (1)

where W is the potential energy of the system, i denotes
the particle, k denotes the Cartesian component of a
vector, and the noise � obeys

h�ki i � 0 and h�ki �t��
l
j�t

0�i � 2D�ij�kl��t� t0�: (2)

Note that the potential energy is not necessarily an ex-
ternal potential. In fact, the potential energy that I have in
mind is a sum of pair potentials. It is well known that the
above Langevin equations can be transformed into a
Fokker-Planck equation for, P, the distribution function
in configuration space,
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X
i

ri 
 �Dri � �riW�P: (3)

This has as a steady state solution the Gibbs distribution
PS / exp��W=kT�, where kT � D=�. A standard trans-
formation P � P1=2

S � [6] leads to an imaginary time
Schrödinger equation
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The precise form of H is not of interest in the following
and will not be given here. It is important to note, how-
ever, that it is a Hermitian operator, and nonnegative
definite, where its only eigenstate with zero eigenvalue
is the ground state �G � P1=2

S . This defines for the clas-
sical system in thermal equilibrium a natural ‘‘ground
205701-2
state.‘‘ Clearly the �G is symmetric under permutations
and therefore is the ground state of the bosonic reduction
of H. Therefore, a Bose condensed fraction � can be
defined for the classical liquid as the ground state con-
densed fraction of some quantum Bose system with a
ground state given by �G � P1=2

S . Clearly the ground
state condensed fraction is a functional of the ground
state. This functional is known for many years to be given
by [7]
� �
1

V

R
dr1dr01dr2 
 
 
 drN�G�r1; r2; . . . ; rN��G�r01; r2; . . . ; rN�R

dr1dr2 
 
 
 drN�2
G�r1; r2; . . . ; rN�

: (5)
For the benefit of the reader, I will just present here the
necessary ingredients needed for a simple proof of the
above relation. First, the normalized ground state has to
be written in second quantized form as

jGi�
�
N!

Z
dr1 


drN�2

G�r1; . . . ;rN�
�
�1=2

�
Z
dr1 


drN�G�r1; . . . ;rN� ��r1�


 ��rN�j0i;

(6)

where the  �’s are local Bose creation operators and j0i
is the vacuum (no particle) state. Then, the creation op-
erator in the single particle zero momentum state is ex-
pressed as

a�0 � V�1=2
Z
dr ��r�; (7)

and the condensed fraction is written as

� � hGja�0 a0jGi: (8)

The rest of the job is done by using the Bose commutation
relations

� �x�;  �y�� � � ��x�;  ��y�� � 0

and � �x�;  ��y�� � ��x� y�:
(9)

Consider a classical system, described by a potential
energy given by a sum of pair potentials, which at tem-
perature T is in the liquid phase. The corresponding
condensed fraction is obviously a functional of the pair
potential � and a function of the temperature and the
density. In the following, it will be shown that in the
liquid state the condensed fraction is nonvanishing. For
the liquid the condensed fraction is given by

� �
Z
dr1dr01dr2 
 
 
 drN exp

"
��1=2��

(XN
i�2

���ri � r1�

���ri � r01�� �
XN
i;j�2

��ri � rj�

)#
=QNV; (10)
whereQN is theN particle partition function. Now, multi-
ply and divide the right-hand side of the above by QN�1

and note next that QN�1 can be obtained from an inte-
gral very similar to that on the right-hand side of Eq. (10).
The difference being that the integrand in QN�1 has an
additional factor of expf��1=2��

PN
i�2���ri � r1� �

��ri � r01� � 2��r1 � r01��g. Because of the short range
of �, the last term in the exponent can be dropped when
integrating over r1 and r01 so that the final result is

� �
QN�1

VQN

G��1=2���
G���

; (11)

where

G��� �
Z
dr

�
exp

�
��

XN�1

i�1

���ri� ���ri � r��
�

(12)

and where the average is taken with respect to the Gibbs
distribution at temperature T of a system of N � 1 parti-
cles interacting via the two body potential �. It is clear
that the ratio QN�1=VQN is of order one. The ratio of the
G’s is also of order one. To see that it will be more
convenient to express G��� in the form

G��� �
Z
dr
�
exp

�
��

Z
dr0��r0����r0� � ��r0 � r��

�
;

(13)

where ��r� �
PN�1
i�1 ��r� ri� is the particle density.

Since the two particle potential is short ranged the ex-
pression for G can be simplified to

G��� � V
�
exp

�
�2�

Z
dr0��r0���r0�

�
: (14)

Each of the G’s is of order V and so their ratio is of order
one. In fact, for the hard sphere system the ratio of theG’s
is just 1. Thus the condensed fraction is nonvanishing in a
classical liquid.

The frozen state is characterized by the fact that each
particle is localized in the vicinity of some fixed point in
space. The analogy with the quantum mechanical Bose
system, this time with a system in which the particles are
localized, is still valid, because the localization can be
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taken into account by a proper modification of the clas-
sical distribution function. The problem of the existence
of Bose-Einstein condensation in a Bose solid was dis-
cussed extensively in the past [7–13] and these ideas can
be borrowed now for the discussion of the frozen state in
the classical case. The relevant result for the present
discussion is that Bose-Einstein condensation does not
exist in a Bose system in which the particles are local-
ized. Therefore it also does not exist in the frozen classical
system. For the sake of completeness, an outline of the
argument is given in the following.

A reasonable configuration space distribution function
corresponding to the frozen system Pf is given by

Pf � PS
X
p

L�r1; . . . ; rN;p�R1; . . . ;RN��; (15)

where the sum on p is the sum over permutations of the
lattice (either periodic or disordered) sites. The function L
is given by

L�r1; . . . ; rN;R1; . . . ;RN� �
YN
i�1

g�ri �Ri;Ri�; (16)

where the function g�r;Ri� viewed as a function of r is
one within some compact singly connected region around
the origin and vanishes outside it. Its dependence on Ri
denotes that the shape and orientation of the region in
which the function differs from zero depends on the
lattice site. (Even for the more familiar ordered lattice
such a form is necessary as PS alone is invariant under
translations.) Consider the off diagonal correlation
function

��r� �

R
dr1 
 
 
drN�f�r1; . . . ;rN��f�r1 � r; r2; . . . ; rN�R

dr1 
 
 
drN�2
f�r1; . . . ; rN�

;

(17)

where �f � P1=2
f . The system will exhibit a nonzero

condensed fraction if and only if the off diagonal corre-
lation has an infinite range. In order to understand what
is going on it is instructive to consider first the case
of no overlap. This is the case where g�r�Ri;Ri� �

g�r�Rj;Rj� � 0 for i � j. Each of the �’s in the in-
tegrand in the numerator on the right-hand side of
Eq. (17) involves a sum over permutations. The integrand
in the numerator on the right-hand side of Eq. (17) will
thus involve a double sum over permutations of terms of
the form L�r1; . . . ; rN;p�R1; . . . ;RN��L�r1 � r; . . . ; rN;
p0�R1; . . . ;RN��. Because of the condition of no overlap
applied to r2; . . . ; rN , it is evident that any product of two
L’s corresponding to two different permutations is iden-
tically zero. In case p0 � p, it is obvious that for jrj large
enough (larger than the linear size over which g�r; p�R1��
is different from zero) the product of L’s is again identi-
cally zero. Therefore, the off diagonal correlation (17)
vanishes identically for finite large enough distances.
For small overlap it will never vanish identically but
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will decay over a finite range, so that the condensed
fraction is zero [13]. In reality the overlap is small,
describing the fact that a particle cannot escape from
the cage consisting of its neighbors. So condensation
does not exist.

The fact that condensation exists in the liquid state and
does not exist in the frozen state implies that a dimen-
sionless parameter, g, that measures the glassiness of the
liquid can be defined

g � 1� �: (18)

Thus, the glassiness changes continuously from zero in
the extremely dilute gas to one in the frozen state. In the
following, I will give two examples in which known
results from classical liquid theory will be used to obtain
the glassiness in liquids with repulsive interactions.

The first example is that of the one-dimensional hard
rode problem. It is interesting not only because it can be
solved exactly but also because of its special peculiarities,
which result from the one-dimensional character of the
problem. The one-dimensional hard rod problem is sol-
uble and QN can be obtained exactly [14,15]:

QN � �L� �N � 1�a�N; (19)

where L is the total length of the system (not periodic)
and a the length of a single rod. Using Eq. (11) and the fact
that the ratio of the G’s is one in the case of hard cores, it
is easy to obtain the condensed fraction

� � �1� x��x=�1�x�; (20)

where x � Na=L. This result of a finite condensed frac-
tion for the hard rod case is actually misleading. The
reason is that, because of the strict hard rod condition,
symmetry under permutation is obviously irrelevant be-
cause the particles cannot be interchanged dynamically
and the initial order of the different particles is preserved.
Thus the dynamically relevant quantity is QN=N! rather
than QN , because the latter takes into account, errone-
ously, all possible orderings of the particles. This leads, as
expected, to a vanishing condensed fraction. This is spe-
cific to the hard core one-dimensional system where the
condensed fraction vanishes while the particles are not
localized and do not form a glass. The last property is a
peculiarity of one dimension. Only in one dimension with
a hard core interaction symmetry under permutations can
be broken in spite of the fact that the system is not frozen.
In higher dimensions, the dynamical irrelevance of sym-
metry under permutations can follow only from localiza-
tion. To get some idea of what happens in the liquid phase
in three dimensions consider next the hard sphere system.
I will use here the Percus-Yevick (PY) approximation
[16], in spite of its known shortcomings at high densities,
because it offers an analytic [17] and reasonable result
over a wide range of densities. The PYequation of state is
given by
205701-3
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p � nkT�1� �� �2�=�1� ��3; (21)

where � is expressed in terms of the hard sphere radius R
and the particle density �, � � &R3�=6. Once the pres-
sure is given, QN can be obtained readily, resulting in a
straight forward manner in an expression for the con-
densed fraction

� � �1� ��f���; with f��� � �3=2��1� 1=�1� ��2�;

(22)

and the glassiness will be just

g � 1� �1� ��f���: (23)

Clearly, the above expression cannot be taken seriously
for relatively high densities but can be expected to be a
semiquantitative description up to medium density range
(� about 0.3–0.4).

A number of questions can be raised now concerning
all the above discussion. First, to what extent is the
definition of g arbitrary? One can use, of course, more
complicated functions of the condensed fraction that
interpolate between zero and one. This arbitrariness is
trivial, of course, and the same can be done for many
traditional definitions of physical quantities. There are,
however, more interesting possibilities. Since the system
is formally equivalent to a Bose system, one could look
also for a superfluid density, �S, and define perhaps the
glassiness as g � 1� �S. This, however, will not give us
any information about the liquid, since the liquid at a
finite temperature is equivalent to a Bose liquid at zero
temperature (ground state). In a translational invariant
Bose ground state the superfluid density is always one and
that definition of glassiness will always lead to zero glass-
iness in the liquid state. This is different from the situation
of a Bose system in the presence of a random potential
[18], where �S changes continuously and becomes zero for
strong pinning. There, the ground state for each realiza-
tion is not translational invariant. Second, why look at
such a parameter and not just stay with the viscosity?
First, it is always interesting to look at the same phe-
nomena from a new and different angle. This may lead to
interesting new insights and connections. The second
reason is more practical. I would suggest that perhaps
the most interesting regime for the study of glassiness
in liquids is that of supercooled liquids. In that regime the
direct measurement of viscosity might not be that easy,
because it necessitates a macroscopic disturbance of a
metastable system. Third, is the glassiness an accessible
parameter? From the theoretical point of view the answer
is definitely positive. Obviously, approximation schemes
that improve on PY for hard core interactions can be used
as well as simulations. Established analytical and nu-
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merical methods can be used to treat cases with soft
interactions including attractive parts, which are of great
interest. Last, is glassiness a measurable quantity? It can
be measured in simulations, but what about real experi-
ments. Even without checking their relevance to the
present problem it is clear that recent Bose-Einstein con-
densation experiments seem to be out of the question.
They are done at extremely low densities, which in any
case are not interesting for the case studied here. They are
totally not useful for the determination of the condensed
fraction in liquid helium, where only indirect measure-
ments exist. For example, the condensed fraction can be
obtained from the measured structure factor [19]. This
seems to be possible also in our case and is postponed to
future publications.

The purpose of the present Letter is just to introduce
the basic idea and hopefully it will trigger further activity
in the future. I believe that of particular interest will be
the study of the glassiness in liquids near their transition
point and in the metastable domain of supercooled
liquids.
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