
VOLUME 93, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S week ending
12 NOVEMBER 2004
Classical Projected Phase Space Density of Billiards and Its Relation
to the Quantum Neumann Spectrum

Debabrata Biswas
Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

(Received 16 April 2004; published 10 November 2004)
204102-1
A comparison of classical and quantum evolution usually involves a quasiprobability distribution as a
quantum analogue of the classical phase space distribution. In an alternate approach that we adopt here,
the classical density is projected on to the configuration space. We show that for billiards, the
eigenfunctions of the coarse-grained projected classical evolution operator are identical to a first
approximation to the quantum Neumann eigenfunctions. However, even though there exists a corre-
spondence between the respective eigenvalues, their time evolutions differ. This is demonstrated
numerically for the stadium and lemon-shaped billiards.
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A comparison of classical and quantum dynamics in
terms of appropriate evolution operators is of much inter-
est [1–4]. Besides improving our understanding of the
statistical properties of quantum spectral fluctuations,
these studies are expected to shed light on the effective
irreversibility (e.g., relaxation to the invariant density)
observed in low-dimensional isolated systems which are
otherwise time reversible.

In the probabilistic approach to dynamics, classical
time evolution is studied in terms of the propagation of
the phase space density, ��p; q�. The evolution of ��q; p�
is governed by the Perron-Frobenius (PF) operator, Lt,

L t � ��x� �
Z
��x� ft�x0����x0�dx0; (1)

where x � �q;p� is a point in phase space and ft�x� is its
position at time t. In the Hilbert space of phase space
functions, Lt is unitary [5,6]. The existence of an invari-
ant density, �0, implies Lt � �0 � �0. A system is ergo-
dic if the unit eigenvalue is nondegenerate. A knowledge
of the spectral decomposition of Lt allows one to evaluate
correlations, averages, and other quantities of interest. For
integrable systems, the spectrum of Lt is discrete, while
for mixing systems, there is a continuous spectrum apart
from the unit eigenvalue. The exponential decay to the
invariant density is connected to the continuous part of
the spectrum and reflects in the Fourier transform of time
correlations as broad peaks on the real axis [7].

A starting point for the comparison of classical and
quantum dynamics is usually a quasiprobability distribu-
tion involving the density operator, �̂ � j ih j. This
enables one to ‘‘lift’’ the quantum state to the phase space.
The process is however not unique and depends on the
ordering scheme used to arrange the noncommuting op-
erators �q̂; p̂� [8,9]. A commonly used quasiprobability
distribution is the Husimi function, which is a coherent
(most classical) state representation of the quantum den-
sity operator. The Husimi propagator is thus a quantum
analogue of the Perron-Frobenius operator and the eigen-
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states of the two provide a means of comparing quantum
and classical evolution.

While the exact Husimi function does not decay to the
invariant density, it is found that coarse graining of the
phase space leads to a loss of unitarity and the eigenvalues
of the coarse-grained classical and quantum propagator
have been found to be identical in some cases [3,4].

The primary aim of this Letter is to explore the ex-
istence of a correspondence between the classical and
quantum spectrum for the class of systems referred to
as billiards. However, rather than ‘‘lifting’’ the quantum
description to the phase space using a quasiprobability
distribution, we shall project the classical density to the
configuration space by integrating out the momentum:
��q� �

R
��q;p�dp. While we shall restrict ourselves to

billiards here, the essential idea of seeking a quantum-
classical correspondence using the projected density in-
stead of the full phase space density is applicable to other
systems as well. In the following, we shall show that for
billiards, there exists a correspondence between the ei-
genvalues of the coarse-grained projected classical evo-
lution operator (Lt

P) and the quantum Neumann
spectrum, while the respective eigenfunctions are iden-
tical to a first approximation. However, the eigenvalues
evolve differently with time so that classical and quantum
evolution differ [10].

Billiards have relevance in a variety of contexts. The
Helmholtz equation describing the quantum billiard
problem also describes acoustic waves, modes in micro-
wave cavities, and has relevance in studies on ‘‘quantum
wells,’’ ‘‘quantum corrals,’’ mesoscopic systems, and
nanostructured materials.

In a classical billiard, a particle moves freely inside an
enclosure and reflects specularly from the boundary.
Depending on its shape, billiards exhibit the entire range
of behavior observed in other dynamical systems. They
also provide a means of coarse graining that is perhaps
unique. The dynamics of smooth billiards can be coarse
grained by polygonalizing the boundary [12–14].
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Rational polygonal billiards are nonergodic and nonmix-
ing. However, the short time dynamics of a polygonalized
billiard can approximate that of the smooth billiard [13].

The quantum billiard problem consists of determining
the eigenvalues and eigenfunctions of the Helmholtz
equation r2 �q��k2 �q��0 with  �q� � 0 (Dirichlet)
or n̂:r � 0 (Neumann boundary condition; n̂ is the unit
normal) on the boundary. Its semiclassical description
holds the key to the quantum-classical correspondence.
However, since a quantum state (or the quasiprobability
distributions constructed out of it) can essentially resolve
phase space structures of the size of a Planck cell, polyg-
onalization provides just as much information about the
quantum state at the semiclassical level [14,15].
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We shall consider a polygonalized billiard as an ex-
ample of a coarse-grained system. The ‘‘unfolded’’ dy-
namics of a polygonalized billiard can be viewed locally
as a straight line on a singly connected invariant surface
consisting of multiple copies of the enclosure glued to-
gether appropriately at the edges, each copy denoting a
momentum direction that is related to the previous one by
the law of reflection at the glued edge (for a figure, see
[11,16]). As the magnitude of the momentum (p) and the
angle ’ that p makes with (say) the x axis are conserved,
it is convenient to treat p in polar coordinates (p;’).
Transforming from (px; py) to (p;’), the p integration
in Eq. (1) simplifies as
Z
dpxdpy��px � p0t

x �q0;p0����py � p0t
y �q0;p0��h�q0;p0� �

Z
d’��’� ’0�h�q0

u; ’
0;p� � h�q0

u; ’;p�; (2)
where qu is a point on the unfolded space, p0t
x �q0;p0� (p0t

y )
is the x�y� component of the momentum at time t for the
initial phase space coordinate �q0;p0�, and

h�q0
u; ’;p� � ��qu � qu

0t�qu
0;’;p����q0

u;’;p�: (3)

Thus Lt � � �
R
dq0

u��qu � qu
0t�q0

u;’;p����q0
u�. Note

that the time evolution of � depends on ’ through the
kernel as qu

0t depends on both the initial position and
momentum. Thus Lt � Lt�’�.

Projection onto to the configuration space requires an
integration over the angle ’. The time evolution of the
projected density is thus given by:

Lt
P���q��

1

2�

Z 2�

0
d’Lt�’����q�

�
1

2�

Z
dqu

0d’��qu

�qu
0t�qu

0;p;’����q0�: (4)

The spectrum of Lt
P can be studied by evaluating its

trace

T rLt
P �

1

2�

Z 2�

0
d’

X
e�n�’�t (5)

�
1

2�

Z
dqu

Z
d’��qu � qu

t�qu;p;’��: (6)

Note that due to the multiplicative nature of the Perron-
Frobenius operator, Lt, its eigenvalues �n�t;’� are of the
form e�n�’�t. It can be shown that for t > 0 [11]

T rLt
P ’ NC� N

X1
n�1

g�
������
En

p
l�; (7)

where fEng refers to the quantum Neumann spectrum,
l � tv where v refers to the velocity, g�x� ����������������
2=��x�

p
cos�x� �=4�, N is the maximum number of

allowed momentum directions, andC ’ 1=N is a constant
[17,18]. Since g�x� ’ 1
2�

R
2�
0 eix sin�’�d’ for large x, it fol-

lows that for v � 1, �n�’� � i
������
En

p
sin�’�. Thus, the

power spectrum of a projected density contains peaks at������
En

p
.

The above correspondence between the classical and
quantum spectrum of polygonal billiards arises from a
similarity in the traces of Lt

P and the quantum propagator
when expressed in terms of periodic orbits. The corre-
spondence, however, strictly holds for large En so long as
one uses a delta function kernel in Lt [11]. For smaller
value of En, the correspondence exists if the delta func-
tion kernel in Eq. (4) is smoothened [11,16]. This effec-
tively results in a coarse graining of the dynamics, and in
generic cases, leads to the inclusion of a higher order term
in the classical and quantum trace [11,16]. Despite the
coarse graining, fEng in most cases refers to the approxi-
mate quantum Neumann spectrum as the semiclassical
trace formula, which is used in arriving at the correspon-
dence, remains inexact. For integrable polygons such as
the rectangle, the correspondence is exact and can be
shown directly [11].

Despite the correspondence, quantum time evolution
differs from evolution due to Lt

P as the eigenvalues evolve
differently. The quantum Neumann eigenfunctions are
however approximate eigenfunctions of Lt

P. This has
been established [12] for a quasiclassical adaptation of
Lt
P when the Dirichlet eigenstates are of interest. For the

Neumann problem, a similar derivation follows, provided
the quasiclassical kernel is replaced by the classical ker-
nel. We shall demonstrate numerically that  n�q� approx-
imates the quantum Neumann eigenfunctions.

For generic polygons, the unit eigenvalue of Lt is non-
degenerate and the corresponding eigenfunction is a con-
stant. This is true as well for the projected operator, Lt

P.
Thus �0 � 0. The quantum Neumann problem also has a
constant as its ground state eigenfunction and the corre-
sponding eigenenergy E0 � 0.
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In order to determine the eigenvalues and eigenfunc-
tions of Lt

P, we shall first evaluate its smoothened kernel

KP�q;q0; t� �
1

2�

Z
d’���q� q0t�’��

�
X
n

 n�q� �
n�q0��n�t� (8)

as a function of time. Here �� is a smoothened delta
function and n�q� are the eigenfunctions of the projected
Perron-Frobenius operator, Lt

P. As an example of the
smoothened delta function, we consider the hat function,
which is zero outside a cell of size � [19]. The ’ integra-
tion is performed by shooting trajectories from a point q0

at various angles and evaluating the fraction of trajecto-
ries in a cell of size � at q [11]. Since �n � i

������
En

p
sin�’�,

for v � 1, a Fourier transform of KP�q;q0; t� has peaks at
k �

������
En

p
, the width depending on � and the heights on

 n�q�. An eigenfunction corresponding to a particular
eigenvalue can thus be measured by varying q and mea-
suring the height of the desired peak.

We now present our numerical results for the stadium
and lemon-shaped billiards. The chaotic stadium-shaped
billiard that we consider consists of two parallel straight
segments of length 2 joined on either end by a semicircle
of unit radius. This has been polygonalized using ten
segments to approximate the semicircle. Figure 1(a)
shows the eigenfunction of Lt

P corresponding to the first
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FIG. 1. (a) An eigenfunction of Lt
P corresponding to the first

nonzero eigenvalue of the polygonalized stadium. It is sym-
metric in Y (Neumann) and antisymmetric in X (Dirichlet).
(b) Its quantum counterpart in the smooth stadium.
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peak at a nonzero k (k ’ 0:70) in the power spectrum of
(the smoothened) kernel KP�q;q; t� for the polygonalized
stadium. Only the first quadrant is shown due to the
reflection symmetry of the system. Note that we have
plotted the intensities as the peak heights are propor-
tional to j n�q�j

2. Figure 1(b) shows the corresponding
quantum Neumann eigenfunction of the smooth stadium
at k ’ 0:87 found using the boundary integral technique.
Such a correspondence is seen to exist for other states as
well.

We consider next a lemon-shaped enclosure con-
structed by the intersection of two circles of radius 2.5
centered at �2; 0� and ��2; 0�, respectively. Each arc is
approximated by seven segments. Figure 2 shows a com-
parison similar to Fig. 1 for this enclosure for the third
peak in the power spectrum of KP at k ’ 3:08. The
agreement with the exact quantum eigenfunction (k ’
3:51) of the smooth lemon-shaped billiard is again
reasonable.

We have thus seen that there is a correspondence, albeit
approximate, between the eigenstates of the quantum and
projected classical evolution operators. The theoretical
basis (see also [11]) clearly indicates that the eigenstates
obtained using this method are at best ‘‘semiclassical’’ in
nature. In cases where the corrections are zero (rectangle
or equilateral billiard), the quantum Neumann eigen-
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FIG. 2. (a) An eigenfunction of Lt
P corresponding to the third

nonzero eigenvalue of the polygonalized lemon-shaped bil-
liard. It is symmetric in X and antisymmetric in Y. (b) Its
quantum counterpart in the smooth lemon with k ’ 3:51.
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FIG. 3. The time evolution of the locally space and time
averaged configuration space density, ��q; t�, in a lemon-
shaped billiard with different degrees of polygonalization.
The number of linear segments approximating each arc is
shown in the figure. The point q is different in each case.
The background shows the density at t ’ 1250 for the 31 seg-
ment case.
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states are identical to the eigenstates of LP, and the
smoothening parameter � can be made small. In general,
at higher energies, the peaks in the Fourier transform of
KP�q;q0; t� are generally harder to resolve as the density
of eigenvalues increases with k. Thus, measuring pro-
jected eigenfunctions using trajectories becomes harder.

There are basic differences in the interpretations of the
quantum and projected classical eigenstates. Each quan-
tum eigenfunction is associated with a density that is
invariant in time while only the constant eigenfunction
of Lt

P qualifies as a configuration space density and is
invariant. All other densities, ��q�, decay to the invariant
density on evolving with Lt

P. The eigenvalues of Lt
P thus

form a decay spectrum. As an example of the decay to the
uniform density in polygonalized billiards, we present in
Fig. 3 the evolution of an initially localized projected
phase space density, locally averaged in space and time,
for three different versions of the polygonalized lemon-
shaped billiard considered above. The time evolution of a
projected density can be expressed in terms of the eigen-
states of Lt

P as

��q; t� ’ �av �
1

t1=2
X1
n�1

cn n�q� cos�
������
En

p
t� �=4� (9)

for t sufficiently large. The coefficients, fcng, apart from
some factors, depend on

R
 n�q���q; 0�dq. The approach

to the uniform density, �av, is highly oscillatory and the
overall decay rate may differ from t�1=2 due to the sum of
oscillatory terms. We have estimated the overall decay by
locally averaging ��q; t� over time. For each of the three
cases in Fig. 3, the best fit of a� b=t1=2 is also shown.
These results testify that there is a decay to the uniform
density in polygonalized enclosures.
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A discussion on coarse graining is important to under-
stand the significance of the result. There are two levels at
which this has been carried out. Polygonalization enables
us to connect the quantum and classical eigenvalues
analytically. As the number of segments can be increased
to approximate the smooth billiard arbitrarily well, it
might be expected that the eigenvalues and eigenfunc-
tions converge to those of the smooth billiard in both the
quantum and classical case. We have verified this numeri-
cally for a few eigenstates of stadium and lemon billiards.
Thus coarse graining via polygonalization might be un-
important for observing the correspondence. The second
and more significant coarse graining of the dynamics is
related to the smoothening of the delta function kernel.
This enables us to connect the classical and quantum
eigenvalues even for smaller values of �n and is hence
indispensable.

Finally, it is worth noting that the determination of
exact eigenstates of the Perron-Frobenius operator is
generally nontrivial while quantum states are easier to
determine. The usefulness of the results presented here
thus lies in using quantum states to evolve classical
configuration space densities.
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