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We demonstrate that the second-order coupling of local polarizations contributes significantly to the
third-order nonlinear optical susceptibility ��3� through cascaded processes, as much as does direct
third-order coupling. Temporal analysis of nonlinear polarization shows that ��3� depends intrinsically
on pulse width if the pulse width is shorter than about 10 times the relaxation time of nonlinear
polarization. Analysis of the pulse-width dependence of the third-order polarization in a femtosecond
regime may differentiate the second-order local cascading process and the direct third-order process.
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As the field of second-order nonlinear optics matures,
more attention is being focused on third-order nonlinear
optical (NLO) processes, such as third-harmonic genera-
tion, optical soliton generation, two-photon absorption,
and the nonlinear refractive index [1–3]. The third-order
nonlinear susceptibility ��3� is an important parameter
for the prediction and evaluation of those effects. How-
ever, it has been argued that ��3� cannot be regarded as an
appropriate material constant characterizing third-order
NLO properties, because values for ��3� have been often
reported to vary wildly in magnitude, depending on
illumination parameters, such as the light source
pulse width [4,5]. In general, nonlinear susceptibility of
the nth order ��n� (n � 2) of a medium does not have a
single temporal dependence, because various constituents
in the medium are responsible for NLO processes, such as
valence and conduction electrons, nuclei, ionic groups,
and molecules, all of which have different response times
[4–9]. As sub-fs light pulses have become available re-
cently [10], it is possible to differentiate the NLO pro-
cesses arising from the various constituents.

In recent years, several authors have reported that even
a single nonlinear constituent contributes to ��3� in two
different ways [11–13]: a direct third-order coupling and
locally cascaded second-order couplings. However, no
study has yet been reported on the pulse-width depen-
dence of these processes involving virtual states. In this
Letter, we demonstrate that ��3� depends intrinsically on
pulse width, even with a single nonlinear constituent, and
the contributions of the second-order couplings and the
third-order coupling to ��3� can be differentiated in fem-
tosecond pulse-width regime. We present also that the
second-order coupling of local polarizations that is en-
tirely responsible for ��2� makes a significant contribution
to ��3� as well, which enables us to resolve the long-
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standing question of whether, or how, ��2� and ��3� are
related.

We deal with a system composed of a single type of
charged particles, each of which is placed in an anhar-
monic potential with second- and third-order nonlinear
terms. When a local electric field F�t� is applied to a par-
ticle, the equation of motion is represented as [12,14,15]

�xi�2�ii _xi��2
i xi�aijkxjxk�

bijklxjxkxl�����qFi�t�=m; (1)

where i, j, k, and l refer to the directions of the principal
axes, and �ii and �i denote a damping coefficient and a
resonance frequency in the ith direction, respectively. aijk
and bijkl represent the components of the second-order
coupling tensor a and the third-order coupling tensor b,
respectively. q is an electric charge of the particle and m
is the particle mass.

Assuming the magnitude of the nonlinear terms in
Eq. (1) is much smaller than that of the linear term, the
solution can be obtained by using the Rayleigh-
Schrödinger method of perturbation. As a result of non-
linear interactions, the total local field F�t� consists of a
linear field F�1��t� and generated nonlinear fields. Thus,
the solution and the local field can be written

xi�t� � x�1�i �t� � �x�2�i �t� � �2x�3�i �t� � � � � ; (2a)

Fi�t� � F�1�
i �t� � �F�2�

i �t� � �2F�3�
i �t� � � � � ; (2b)

where � is an expansion parameter, which is to be set
equal to one. The coefficients aijk and bijkl in Eq. (1) must
be also replaced by �aijk and �2bijkl. Using Eq. (2), the
perturbative expansion in Eq. (1) leads to a set of equa-
tions for each order of � and we obtain the third-order
solution in the frequency domain as
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where Dkk�!� � �2
k �!2 � 2i�kk!.

Equation (3) represents a comprehensive expression for
the generation and propagation of the third-order local
field F�3��t�. The last term represents linear responses to
F�3��t�, while the second term represents a conventional
��2� � ��2� cascading process. These two terms did not
appear in previous works [12,15,16], because only
F�1��t� was considered as a driving force. The first term
in Eq. (3) consists of two parts: the first for direct third-
order nonlinear coupling [Fig. 1(a)] and the second for
cascading of two second-order nonlinear couplings at the
same local site [Fig. 1(b)]. The cascading process in the
first term differentiates from the cascading process in the
second term. The former takes place at the same local
site, whereas the latter occurs over two different local
sites [Fig. 1(c)]. The former is termed local cascading and
the latter nonlocal cascading throughout this Letter.

The local polarization is given by the relation PL �
qx=v, where v is the effective volume occupied by a
single particle. The microscopic susceptibility ��n�

L is
defined by
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(4)

where !l’s satisfy !1 � � � � �!n � !, and integers p
and pl’s satisfy p1 � � � � � pn � p � n. Ignoring struc-
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FIG. 1. Schematics of three different processes for third-
order NLO effects: (a) a direct third-order coupling process,
(b) a local cascading process, and (c) a nonlocal cascading
process. Shaded circles, dotted lines, and junctions of the
dotted lines indicate effective regions of nonlinear couplings,
local electric polarization fields, and nonlinear couplings,
respectively.
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tural parameters for simplicity, macroscopic susceptibil-
ities are related to microscopic susceptibilities by

��1�
ii �!� � Lii�!���1�

L;ii�!�; (5a)
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where L�!� is the local field factor [15,16]. Then the
second- and third-order nonlinear susceptibilities are ex-
pressed as
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(8b)
where �jkl� represents cyclic permutations of the indices,
and !j indicates the frequency related to the linear sus-

ceptibility component ��1�
jj . Because the second term of

Eq. (3) is described by ��2�, the term associated with the
nonlocal cascading is left out in ��3� though it contributes
to effective third-order nonlinear susceptibility.

The third-order susceptibility ��3� consists of two
parts, ��3�:3 and ��3�:2
2, which represent the third-order
direct and second-order local cascading processes, re-
spectively. It should be noted that the second-order cou-
pling coefficient aijk that is responsible for ��2� also
contributes, in part, to ��3�. The coefficient aijk contrib-
utes to ��3� even in a material with inversion symmetry,
because the product a � a in Eq. (8b) follows the same
symmetry rule for fourth-rank tensors as b. This implies
that a material consisting of molecules with large first-
order molecular hyperpolarizability � can have large ��3�

even in a centrosymmetric structure, where ��2� vanishes,
because a is proportional to �.
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FIG. 2. Formation and relaxation of third-order nonlinear
polarizations arising from (a) a direct coupling process and
(b) a local cascading process. Solid and dashed curves indicate
the linear relaxation described by ��1�� � and the products of
polarization components, respectively.
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Bassani and Lucarini suggested that the contribution
of ��3�:2
2 to ��3� is much smaller than that of ��3�:3 be-
cause the former goes to zero much faster than the latter
[12]. However, our estimation shows that the magnitude
of the two contributions to ��3� may be comparable. Using
the reported ��2� and ��3� values for KNbO3 [17] and as-
suming L�!� to be of the order of 1, the magnitudes of the
coefficients �2, a, and b are calculated to be in the range
of 2
1031–4
1031 in units of s�2, �A�1s�2, and �A�2s�2,
respectively. Using the coefficients, ��3�:3

3333 and ��3�:2
2
3333 are

estimated to be �13
 10�22 m2=V2 and �24

10�22 m2=V2, respectively, for third-harmonic generation
at 2:1 �m. This indicates that the contribution of the
second-order local cascading process ��3�:2
2 could be
more significant than that of the direct third-order pro-
cess ��3�:3, which is contrary to the suggestion made
previously [12]. It has long been speculated that a mate-
rial with large ��2� may also have large ��3�. The present
study shows clearly how ��2� and ��3� are related through
the second-order coupling a and resolves the issue.

The contribution of the local cascading, ��3�:2
2 given
by Eq. (8b), can be rewritten as
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Multiplying Eqs. (8a) and (8b0) by the electric field and
taking an inverse Fourier transform, the corresponding
polarization can be expressed with respect to time as
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It should be noted that the local second-order polarization
P�2�
L is included in P�3�:2
2, because it couples with another

linear polarization through the local cascading process to
establish a third-order polarization P�3� before emitting a
second-order field [Fig. 1(b)]. If the terms in square
brackets in Eqs. (9a) and (9b) are defined as effective
electric fields E�3�:3

eff and E�3�:2
2
eff , respectively, P�3�:3�t� and

P�3�:2
2�t� can be interpreted as linear responses to the
effective electric fields. In addition, Eq. (9) informs us
that the nonlinear couplings take place cumulatively
while all the polarization components remain in exis-
tence. In view of the findings of quantum mechanics, it
can be understood that a nonlinear coupling occurs at a
certain time to convert superposed states of an induced
203903-3
dipole into a coupled state, and the coupling probability is
proportional to the product of the relevant polarization
components at that time.

With respect to time, ��1�� � represents a linear relaxa-
tion property of a medium in a relevant frequency region.
Supposing that a component of third-order polarization is
established at a time t�  from three polarization fields
at a local site, which were induced at respective times  1,
 2, and  3, the temporal buildup procedures of P�3�:3�t� for
direct third-order process and P�3�:2
2�t� for second-order
local cascading process are depicted Fig. 2, where only
the magnitudes of P�n� ’s are shown and all the coefficients
in Eq. (9) are normalized to unity for convenience. Since
the nonlinear polarizations are regarded as a linear re-
sponse to the effective fields E�3�:3

eff and E�3�:2
2
eff , their

relaxation is also described by ��1�� �. If the character-
istic relaxation time of ��1�� � in the transparent optical
frequency region is denoted by � (���1), the average
response times for the third-order direct and second-order
local cascading processes are estimated to be 2 � and 3 � ,
respectively (Fig. 2). Figure 3 shows temporal responses
of P�3�:3�t� and P�3�:2
2�t� for applied electric fields of
square pulses with various pulse widths  PW of an order
of � , which were calculated with Eq. (9). As the
pulse width of the applied electric field increases to 10 � ,
both P�3�:3�t� and P�3�:2
2�t� reach saturation, which, in
turn, leads to the saturation of ��3�. However, for a
pulse width of shorter than 10 � , it is clear that ��3�

depends on the pulse width of a light source, for both
P�3�:3�t� and P�3�:2
2�t� depend on pulse width. When the
pulse width is less than 2 � , P�3�:3�t� reaches its peak much
203903-3



FIG. 3. Normalized third-order nonlinear polarizations for
the applied electric fields of square pulses with various
pulse widths  PW.
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earlier than P�3�:2
2�t�, which reflects the faster response
of the direct third-order process.We treat here only square
pulses as a driving field. However, if a pulse shape other
than square is employed, the overall shape of the tempo-
ral response curves may differ slightly, but the differen-
tiation between the temporal responses of the direct and
local cascading processes would exhibit similar features
to that for square pulses. One can go further to examine
the dependence of spectral profile if the dispersion of
linear relaxation is taken into account, which is beyond
the discussion of this work.

The pulse-width dependence applies to third-order
nonlinear processes, due not only to electrons, but also
to other types of nonlinear constituents, such as nuclei
and ionic groups, all of which have different relaxation
times. Therefore, one has to consider the pulse-width
dependence of ��3�, when ��3� is measured or used with
pulses of shorter than 10 � of each nonlinear constituent.
As noticed in Fig. 3, the peak positions of the two non-
linear polarizations P�3�:3�t� and P�3�:2
2�t� are distin-
guishable at times of less than 5 � . Hence, the amount of
contribution of the direct third-order process and the
second-order local cascading process to ��3� can be
worked out separately, by measuring ��3� as a function
of time. However, since polarizations due to electrons
have a relaxation time of sub-fs, which corresponds to
one period of a soft x-ray wave, it is impossible to differ-
entiate between the two processes in the optical wave-
length region. Meanwhile, the contribution of the two
processes caused by nuclei, ionic groups, and molecules
could be distinguished experimentally in the optical
wavelength region, since the relaxation times of their
polarizations are of an order of 100 fs or higher.

In summary, we have studied the temporal behavior of
third-order nonlinear polarizations, using the Rayleigh-
Schrödinger method of perturbation. Three distinct non-
linear processes lead to third-order NLO effects: a direct
third-order process and a second-order local cascading
process, both of which are responsible for ��3�, and a
203903-4
second-order nonlocal cascading process, which is the
��2� � ��2� process. We have shown that both direct third-
order polarizations and second-order local cascaded po-
larizations depend on pulse width, which leads to the
conclusion that ��3� depends intrinsically on the pulse
width of a light source even with a single nonlinear
constituent, and, therefore, when ��3� is used as a material
constant, pulse width should be specified. The direct
third-order process and the second-order local cascading
process may be differentiated experimentally using a
pulse width of femtosecond.
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