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Classical Physics and Quantum Loops
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The standard picture of the loop expansion associates a factor of �h with each loop, suggesting that the
tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in
nature. We discuss counterexamples wherein classical effects arise from loop diagrams and display the
relationship between the classical terms and the long range effects of massless particles.
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It is commonly stated that the loop expansion in quan-
tum field theory is equivalent to an expansion in �h [1].
Although this is mentioned in several field theory text-
books, we have not found a fully compelling proof of this
statement. Indeed, no compelling proof is possible be-
cause the statement is not true in general. In this Letter we
describe several exceptions, cases where classical effects
are found within one-loop diagrams, and discuss what
goes wrong with purported ‘‘proofs.’’

Most physicists performing quantum mechanical cal-
culations eschew keeping track of factors of �h, and use
units wherein �h is set to unity— only when numerical
results are needed are these factors restored. However, use
of this procedure can cloak the difference between clas-
sical and quantum mechanical effects, since the former
are distinguished from the latter merely by the absence of
factors of �h. This is also the practice in many field theory
texts, but there is often a discussion in such works about a
one to one connection between the number of loops and
the factors of �h [1]. The argument used in order to make
this connection is a simple one, and is worth outlining
here: in calculating a typical Feynman diagram, the
presence of a vertex arises from the expansion of

exp
i
�h

Z
Lint��in�d

4x;

and so carries with it a factor of �h�1. On the other hand,
the field commutation relations ��� ~x�; �� ~y�� � i �h
3� ~x�
~y� lead to a factor of �h in each propagator

h0jT���x���y��j0i �
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k2 � m2

�h2 � i�
:

The counting of factors of �h then involves calculating the
number of vertices and propagators in a given diagram.
For a diagram with V vertices and I internal lines, the
number of independent momenta is L � I � V 
 1 and
corresponds to the number of loops. Associating a factor
of �h�1 for the V vertices and �h
1 for the I propagators
yields an overall factor �hI�V
1 � �hL, which is the origin
of the claim that the loop expansion coincides with an
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expansion in �h. We shall demonstrate, however, that this
assertion in not valid.

Let us give an example where one easily identifies
classical results from a one-loop calculation. We describe
the one-loop QED calculation of the matrix element of
the energy-momentum tensor between initial and final
plane wave states [2]. The basic structure of this matrix
element is given by
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4E2E1

p �2P�P�F1�q
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 �q�q�

� ���q
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2��; (1)

where F1�q
2�; F2�q

2� are form factors to be determined.
In lowest order, the energy-momentum tensor form fac-
tors are F1�q2� � 1, F2�q2� � �1=2. The form factors
will receive corrections of order e2 at one-loop order
via a straightforward calculation [2]. The results are
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where � � 2=�� �� log�m2=4��2�.
It is easiest to separate the classical and quantum

effects by going to coordinate space via a Fourier trans-
form. The key terms are those that have a nonanalytic

structure such as
������������������
�q2=m2

p
and q2 ln�q2. These both

arise only from those diagrams where the energy-
momentum tensor couples to the photon lines. In particu-
lar, the square root term comes uniquely from a diagram
represented by Fig. 1, which will play an important role in
all classical effects described in this Letter. We will see
that the square root turns into a well-known classical
correction while the logarithm generates a quantum cor-
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FIG. 1 (color online). Generic triangle diagram with two
massless particles exchanged. In the first calculation, the point
is the energy-momentum tensor coupling. In the polarizability
calculation, it represents the effective vertex for the polar-
izability. Finally, the dotted line describes the cut appropriate
for the dispersive treatment later in the Letter.
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rection. Specifically, we take the Fourier transform of the
amplitude to yield (including here powers of �h)
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We see then that Eq. (3) includes both corrections which
are independent of �h as well as pieces that are linear in
this quantity.

The interpretation of the classical terms is clear. Since
the energy-momentum tensor for the electromagnetic
field has the form [3]
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we determine the energy momentum due to the electrical
classical field to be
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(5)

which agree exactly with the components of Eq. (3) that
fall as 1=r4. Despite arising from a loop calculation then,
this is a classical effect, due to the feature that the energy-
momentum tensor can couple to the electric field sur-
rounding the particle as well as to the particle directly.
At tree level, the energy-momentum tensor represents
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only that of the charged particle itself. However, the
charged particle has an associated classical electric field
and that field also carries energy momentum. From this
point of view, it is not surprising that the calculation
yields a classical term; there is energy in the classical
field at this order in e2, and a calculation at order e2 must
be capable of uncovering it. Of course, the full loop
calculation also contains additional physics, the leading
piece of which is quantum mechanical in nature and falls
as �h=mr5. So we see that the one-loop diagram contains
both classical and quantum physics.

The argument that the loop expansion is equivalent to
an expansion in �h clearly failed in the above calculation.
Let us look at this failure in more detail. One loophole to
the original argument is visible in the propagator, which
contains �h in more than one location. When the propa-
gator is written in terms of an integral over the wave
number, the mass carries an inverse factor of �h. This is
because the Klein-Gordon equation reads

�
� 


m2

�h2

�
��x� � 0;

when �h is made visible. This means that the counting of �h
from the vertices and the propagator is incomplete. One
also needs to know how the mass enters the result, because
there are factors of �h attached therein also.

In the previously discussed loop calculation of the form
factors of the energy-momentum tensor, we can display
the factors of �h in momentum space. Returning �h to the
formula for F1 we find (we continue to use c � 1)
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Here we have written the momentum in terms of the wave
number q � �hk, and we note that e2= �h is dimensionless in
Gaussian units (with c � 1). It is easy to see, then, that
the coefficient of the square root nonanalytic behavior is
independent of �h, while the logarithmic term has one
power of �h remaining. The one-loop result carries differ-
ent powers of �h because it contains different powers of
the factor q2=m2. Moreover, we can be more precise. With
the general expectation of one factor of �h at one-loop,
there is a specific combination of the mass and momen-
tum that eliminates �h in order to produce a classical
result. In order to remove one power of �h, one requires a
factor of
201602-2
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This is a nonanalytic term that is generated only by the
propagation of massless particles. The emergence of the
power of �h�1 involves an interplay between the massive
particle (whose mass carries the factor of �h) and the
massless one (which generates the required nonanalytic
form) [4]. This result suggests that one can generate
classical results from one-loop processes in the presence
of massless particles, which have long range propagation
and therefore generate the required nonanalytic momen-
tum behavior.

There are also other examples where classical results
are found in one-loop calculations. All involve couplings
to massless particles. Let us briefly describe some of
these.

The calculation of the energy-momentum tensor can be
extended to include graviton loops as has been done in
Ref. [5]. Here there exists a superficial difference in that
the gravitational coupling constant carries a mass dimen-
sion and the one-loop result involves the Newtonian
gravitational constant GN . This feature might be thought
to change the counting in �h, but it does not. Again, the
important diagrams are those in which the energy-
momentum vertex couples to the graviton line. The cal-
culation is similar to the above example and we refer the
reader to [5] for details. The classical results emerge from

a square root nonanalytic amplitude such as F1 � 1


G�m
����������
�q2

p
=16
 . . . , and are shown to both describe the

energy contained in the gravitational field and to repro-
duce the classical nonlinear behavior of the
Schwarzschild metric.

Another example from electromagnetism involves the
interaction between an electric charge and a neutral sys-
tem described by an electric polarizability. The classical
physics here is clear: the presence of an electric charge
produces an electric dipole moment ~p in the charge
distribution of the neutral system, the size of which is
given in terms of the electric polarizability $E via

~p � 4�$E
~E: (8)

However, a dipole also interacts with the field, via the
energy

U � �
1

2
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1

2
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Since, for a point charge ~E � er̂
4�r2

, there exists a simple
classical energy

U � �
1

2

e2$E

4�r4
: (10)

This result can be obtained via a one-loop calculation.
Again, for simplicity, we assume that both systems are
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spinless. The two-photon vertex associated with the elec-
tric polarizability can be modeled in terms of a transition
to a JP � 1� intermediate state, yielding the Compton
structure

Amp E �
8�
m

$E��1 � �2P � k2P � k1 
 �1 � P�2 � Pk1 � k2

� �1 � P�2 � k1P � k2 � �2 � P�1 � k2P � k1�;

(11)

where P � 1
2 �p1 
 p2� is the mean four-momentum.

Calculating the effect of this term on the interaction
energy of the neutral system and a charged particle in-
volves the exchange of two photons. Performing the
calculation, one finds the threshold amplitude in momen-
tum space
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Including the normalization factor 1=4mM and Fourier
transforming, we find the potential energy
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 . . . (13)

We see again that the one-loop calculation has yielded the
classical term accompanied by quantum corrections. It
should be noted here that, although we have represented
the two-photon electric polarizability coupling in terms
of a simple contact interaction as done by Bernabeu and
Tarrach [6], the result is in complete agreement with a full
box plus triangle diagram calculation by Sucher and
Feinberg [7].

A similar result is obtained by considering the genera-
tion of an electric quadrupole moment by an external field
gradient. Let us define the field gradient via Eij �

1
2 


�riEj 
rjEi� and the quadrupole polarizability via
Qij � 4�$E2Eij. The classical energy due to interaction
of this moment with the field gradient is given by

U � �
1

2
$E2EijEij: (14)

The quadrupole polarizability can be modeled in terms of
excitation to a JP � 2
 excited state and again, a simple
one-loop calculation finds a combination of classical and
quantum terms. Similarly, in a gravitational analog, the
presence of a point mass produces a field gradient that
generates a gravitational quadrupole, which in turn inter-
acts with the field gradient and leads to a classical energy.

Finally, the gravitational potential between two heavy
masses has been treated to one-loop in an effective field
theory treatment of quantum gravity [8]. Again, the dia-
grams involving two graviton propagators in a loop yield
square root nonanalytic terms that reproduce the non-
linear classical corrections to the potential that are pre-
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dicted by general relativity [9]. This feature has been
known for some time [10].

The lesson here is clear: these examples all involve
one-loop diagrams that contain a combination of classical
and quantum mechanical effects, wherein the classical
piece is signaled by the presence of a square root
nonanalyticity.

We can further understand the association of classical
effects with massless particles by studying a dispersive
treatment. In this approach, we can see directly that the
classical terms are associated with the dispersion integral
extending down to zero momentum, which is possible
only if the particles in the associated cut are massless.
It is useful to use the Cutkosky rules to look at the
absorptive component of the triangle diagram shown in
Fig. 1, wherein we assume (temporarily) that the ex-
changed particles have mass �. A simple calculation
yields [11]
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The corresponding dispersion integral is given by

��q2� �
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�

Z 1

4�2

dt��t�

t� q2 � i�
: (17)

The argument of the arctangent vanishes at threshold and
the dispersion integral yields a form of no particular
interest. On the other hand, in the limit � ! 0, the argu-
ment of the arctangent becomes infinite at threshold and
instead we write

��q2� �
1
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�����������������������������
q2�4M2 � q2�

p 	
�
2
� tan�1

������������������������
q2

�4M2 � q2�

s 

;

(18)

where we have separated the result into two compo-
nents—the piece proportional to �=2, which arises
from the on-shell (delta function) piece of the mass M
propagator and the remaining terms that arise from the
principal value integration. The dispersion integral now
begins at zero and yields a logarithmic result from pieces
201602-4
of ��q2�, which behave as a constant as q2 ! 0, while
square root pieces arise from terms in ��q2� which behave

as 1=
�����
q2

p
in the infrared limit. From Eq. (18) we see that

the former—the quantum component —arises from the
principal value integration while the latter—the classical
component —is associated with the on-shell contributions
to ��q2�. This is to be expected. A classical contribution
should arise from the case where both initial/final and
intermediate state particles are on-shell and therefore
physical.

We have seen above that in the presence of at least two
massless propagators, classical physics can arise from
loop contributions, in apparent contradiction to the usual
loop- �h expansion arguments. The presence of classical
corrections are associated with a specific nonanalytic
term in momentum space. Using a dispersion integral,
the origin of this phenomenon has been traced to the
infrared behavior of the Feynman diagrams involved,
which is altered dramatically when the threshold of the
dispersion integration is allowed to vanish, as can occur
when two or more massless propagators are present. We
conclude that the standard expectation that the loop ex-
pansion is equivalent to an �h expansion is not valid in the
presence of coupling to two or more massless particles.
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