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Vortex Arrays in a Rotating Superfluid Fermi Gas
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The behavior of a dilute two-component neutral superfluid Fermi gas subjected to rotation is
investigated within the context of a weak-coupling BCS theory. The microscopic properties at finite
temperature are obtained by iterating the Bogoliubov–de Gennes equations to self-consistency. In the
model, alkali atoms are strongly confined in quasi-two-dimensional traps produced by a deep one-
dimensional optical lattice. The lattice depth significantly enhances the critical transition temperature
and the critical rotation frequency at which the superfluidity ceases. As the rotation frequency
increases, the triangular vortex arrays become increasingly irregular, indicating a quantum melting
transition.
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Great experimental strides have been made over the
past year in the goal to form a BCS-like superfluid state
with ultracold neutral Fermi gases. Through the use of
magnetic field-induced Feshbach resonances [1–3],
strong interactions between quantum degenerate fermions
in two different hyperfine states have been induced [4–7].
Molecules result when the resulting interactions are re-
pulsive [8–12]; though Cooper pairing at high tempera-
tures (within an order of magnitude of the degeneracy
temperature TF) is widely expected for attractive inter-
actions near the Feshbach resonance [13,14], the state
actually produced in recent experiments [15,16] remains
to be fully elucidated.

Another proposed approach to high-temperature super-
fluidity in these systems is to confine the gases in optical
lattices [17,18]. The flattening of the energy bands as the
lattice depth increases ensures that a large number of
atoms participate in the pairing even for relatively
weak interactions. A deep one-dimensional (1D) lattice
corresponds to an array of quasi-2D traps, whose large
effective axial confinement can enhance the interaction
strength sufficiently [19] to raise the superfluid transition
temperature Tc to within 10% of TF [20].

Rotating the superfluid around the optical lattice axis
should yield vortex arrays akin to those observed recently
in trapped Bose-Einstein condensates [21]. Few clear
signatures of superfluidity exist for dilute Fermi gases
[22]; the first evidence has been obtained only very re-
cently [23–25]. The experimental observation of quan-
tized vortices would be an unambiguous indicator of
superfluidity in the system, though significant depletion
of particles in the vortex cores is expected only in the
strong-coupling limit [26].Vortices in the array of weakly
coupled two-dimensional (2D) traps serve as a clean
model of the pancake vortices in strongly layered
high-Tc superconductors such as Bi2Sr2CaCu2O8�� [27].
Furthermore, because a small fraction of the total number
of atoms reside in any individual lattice site, one might
expect to readily access the quantum Hall limit at high
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rotation frequencies where the number of vortices be-
comes comparable to the number of atoms [28,29].

To my knowledge, the calculations presented below
constitute the first microscopic determination of vortex
arrays in inhomogeneous Fermi superfluids. The central
results of the work are the following: (1) the critical
rotation frequency for the cessation of superfluidity (the
rotational analogue of the critical velocity vc in super-
conductors) scales with Tc; (2) the vortex cores for super-
fluids in the BCS limit that are confined in 1D optical
lattices should be directly visible experimentally at low
temperatures; and (3) the vortex lattice is expected to
melt at zero temperature at high rotation frequencies
approaching the expected quantum Hall transition.

The calculations were inspired by experiments with
attractive Fermi gases confined in optical traps [7,16].
The experiments were performed at magnetic fields above
but near the Feshbach resonance at 860 G [30] at which
the s-wave scattering length between atoms in the hyper-
fine states jF � 1

2 ; mF � � 1
2i (labeled 	 �"; # below) is

a�	104a0 (a0 � 0:0529 nm). With N � 7:5
 104

atoms in each species [7], the Thomas-Fermi (TF) ap-
proximation N � 1

6
!�

!z
��TF�h!�

�3 can be inverted to yield the

TF chemical potential �TF  25 �h!� and the Fermi mo-
mentum at the trap center �hk0F 

���������������
2m�TF

p
; one then

obtains k0Fjaj � 1, which implies very strong coupling.
In contrast, the BCS mean-field approximation is ap-

plicable only for k0Fjaj & 0:6, beyond which one needs to
include pairing fluctuations [31]. The BCS transition tem-
perature is given approximately by the uniform 3D ex-
pression [32] Tc � �8e�	2=���TF exp�	�=�2k

0
Fjaj��,

where � � 0:5771 � � � is Euler’s constant; this does not
take into account polarization corrections (not considered
in the present work), which lower Tc by a factor of
approximately 2.2 [33]. Decreasing jaj such that k0Fjaj �
0:6 yields Tc  1:1 �h!�  0:06TF which remains too low
to easily access experimentally.

This value for Tc can be substantially increased if the
laser were retroreflected to form a 1D optical lattice, with
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FIG. 1. �T;#� phase diagram for the quasi-2D system as a
function of � � ~!z=!�. Regions to the left (right) of a given
curve correspond to superfluid (normal) states. Note that
�h!�=kB  80 nK, so that Tc�# � 0�  200 nK for � � 40.
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potential Vlat � nERsin
2�2�z=�� where n is the lattice

depth in units of the recoil energy ER � �h2
2m �

2�
� �
2. Near

the center of each well, the potential may be approxi-
mated as quadratic in z, with the ratio of the effective
axial and radial frequencies � � ~!z=!� �

���
n

p
�2�d�=

��2 � 20–80 where d� �
����������������
�h=m!�

q
and the lower and

upper limits correspond to � � 1064 nm, n  0:4ER
[16] and � � 10:6 �m, n  50 000ER [7]. Neglecting
interwell tunneling, all of the atoms occupy the axial
oscillator ground state in the quasi-2D limit �� �h ~!z.
A straightforward calculation [34] gives the superfluid
transition temperature for a uniform quasi-2D system

kBT
2D
c � �2e�=���2DTF exp�	

����
2

p ~dz
jaj� where ~dz �

���������������
�h=m ~!z

p
,

not including polarization effects which reduce T2Dc by a
factor of e [20]. In the calculations below, � � 10 �h!�,
d� � 1 �m, a � 	2160a0 (corresponding to the triplet
scattering length that would be obtained for an external
bias field around 2000 G far above the Feshbach reso-
nance), and 20 � � � 40. Choosing � � 40, one obtains
T2Dc  0:16 �K  TF=5. This significantly improves Tc
while k2DF jaj  0:5 remains in the weak-coupling limit.

The calculations are based on a BCS mean-field ap-
proximation to the full quasi-2D interaction Hamiltonian
[35], where the particle density and gap functions are
defined by the thermal averages n	�x� � h y

	�x� 	�x�i
and "�x� � 	~g0h "�x� #�x�i, respectively [here and be-
low x � �x; y� corresponds to a 2D vector]. The ultraviolet
divergence in the definition of the superfluid gap is regu-
larized using the pseudopotential method [36,37], giving
rise to a regularized coupling constant ~g0. An equal
population of the two hyperfine components N" � N# is
chosen to maximize Tc [32]. Diagonalizing the mean-
field Hamiltonian in a frame rotating around the lattice
axis at angular frequency #, one obtains the
Bogoliubov–de Gennes (BdG) equations [35]

�
H 	� "�x�
"��x� 	�H 	���

��
un�x�
vn�x�

�
� En

�
un�x�
vn�x�

�
: (1)

Here H � 	 �h2
2mr

2
x �

1
2m!

2
��x2 � y2� � g0n	�x� 	#Lz,

where Lz � i �h�y@x 	 x@y�. The density and gap functions
are n	�x� �

P
n�junj

2f�En� � jvnj2�1	 f�En��� and
"�x� � 	~g0

P
nunv

�
n�1	 2f�En��, respectively, and must

be iterated to self-consistency together with the quasi-
particle amplitudes un and vn appearing in Eqs. (1) to
obtain equilibrium solutions; the sums run over positive
En and f�En� � �eEn=kBT � 1�	1.

The BdG matrix was evaluated numerically using a
discrete variable representation [38] based on Hermite
polynomials with up to 100 functions/points each in x
and y. The eigenvectors for energies up to En�max� were
obtained using the routine PZHEEVX on a 32-processor
xeon cluster. For the largest grid, each diagonalization
took approximately 50 min. The procedure was deemed
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converged when the magnitudes of " and n	 at successive
iterations were smaller than some predefined tolerance;
for large # as many as 3000 iterations were required to
verify that the ground state had been obtained. The sums
over En were found to fully converge for E�max� � 3�.
N	 was on the order of 3000 for# � 0:98!� for � � 40.

Because the effective coupling strength g0 /
����
�

p
/ n1=4

(where n is the lattice depth in recoils) is a parameter
adjustable by varying the trapping laser intensity, it is
useful to explore the �T;#� superfluid phase diagram for
various �, subject to the constraints �= �h!� < � (single
axial mode approximation) and k0Fjaj< 1 (weak cou-
pling). Results for � � f20; 30; 40g are shown in Fig. 1;
the superfluid transition was obtained assuming cylindri-
cal symmetry (when " � 0 there are no vortices) with
random points checked using the full 2D code. The nu-
merical value of Tc for # � 0 is comparable to the TF
value of T2Dc given above, in spite of the small total
number of atoms and the inhomogeneous density.
Superfluidity also ceases at zero temperature at a critical
angular frequency#c. This is entirely due to the breaking
of Cooper pairs by the quasiparticles’ rotational motion,
and is the neutral analog of the critical velocity vc in
uniform superconductors subjected to a voltage drop [35].
In the latter case, vc / "�T � 0� / Tc; the numerical
results clearly indicate that while the critical frequency
is proportional to Tc, it is much smaller than!� unless Tc
is enhanced by the trap anisotropy.

The immediate question is whether #c can be made
sufficiently large that one or more vortices can be stabi-
lized. If # is too small, the vortex-free state is energeti-
cally favored, and for #�#c the magnitude and spatial
extent of " are too small to support vortices whose char-
acteristic size is the local healing length ) � �h2kF=m�".
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No vortices were observed for � � 20, while � � 30
yielded a small number, fewer than 10. As shown in
Fig. 2, the � � 40 case, with #c �!�, is able to support
large numbers. For small #, the vortices distribute them-
selves into a regular triangular pattern; however, for
increasing angular frequency the arrays become disor-
dered, so that by # � 0:7!� the T � 0 lattice has com-
pletely melted. These results were independent of the
initial guesses for " and n	 and of the convergence
criterion. The vortices tend to be found on circles defined
by the boundary between orbitals of angular momentum
m and m� 1, and concomitantly exhibit considerable
azimuthal distortion (the effect is most noticeable in the
number density).

The zero-temperature melting of a 2D vortex array was
suggested some time ago in the context of the layered
high-Tc superconductors without impurities [39,40].
According to the Lindemann criterion, melting occurs
when the zero-point amplitude of vortex position fluctua-
tions is some critical fraction cL of the intervortex sepa-
ration ‘v; for most materials, cL  0:1–0:2. The quasi-
particle bound states in the vortex core account for the
FIG. 2. Density plots for the in-trap gap function "�x� (a)–(c)
and number density n	�x� (d)–(f) for � � 40 and T � 0.
(a)-(d), (b)-(e), and (c)-(f) correspond to #=!� � 0:4, 0:5,
and 0:7, respectively. Each box is 16 �m on a side.
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vortex fluctuations, and have a spatial extent �). The
vortex separation ‘v for a given # is determined by
matching the angular velocity of the normal-state atoms
with the average circulation + � h=2m of the superfluid
vortices, which yields the vortex density nv�2#=+ or
‘v�1=

������
nv

p
2d��2�m which depends only weakly

on #. For #=!� � f0:4; 0:5; 0:7g shown in Figs. 2(a)–
2(c), the numerics yield )=‘vf0:15;0:17;0:2g, consis-
tent with the Lindemann criterion. Indeed, visual inspec-
tion of the lowest-energy quasiparticle amplitudes un and
vn reveals that they are highly localized near the vortex
cores for # � 0:4 but begin to overlap those of adjacent
vortices for larger #. Furthermore, for systems in the
lowest Landau level the relation N=Nv � c	1L is expected
[40], where Nv is the number of vortices; for the values of
# considered above one obtainsN	=Nv � f12:6; 8:7; 5:5g.
An important question beyond the scope of the present
work is to elucidate the relationship (if any) between
the vortex array melting observed here and any impend-
ing transition into a quantum Hall state (not accessible
with the current formalism). Fractions N=Nv &6 have
been predicted to favor a quantum Hall state in Bose
gases [28].

Perhaps the most important result of this work is that
the vortex cores are faint but nevertheless clearly visible
as depressions in the particle density, particularly for
lower # and T. For #=!� � 0:4 and 0:7, the density in
the vortex core is reduced by approximately 1=2 and 1=4,
respectively. Such large depressions were previously
thought to occur only far from the weak-coupling BCS
limit relevant to these calculations [37].

As shown in Fig. 3, the results for a given # are
strongly affected by the temperature. As T increases,
only atoms in the vicinity of the trap center participate
in the pairing because the local value of Tc is lowest at the
low-density surface of the cloud; alternatively, most of
the pair-breaking quasiparticle excitations occur at the
surface where the effective potential is lowest and the
tangential particle velocities are largest. Similar results
have been obtained with a local-density Ginzburg-
Landau theory [41]. Because the healing length, which
governs the vortex core size, also diverges as the tem-
perature increases, fewer vortices can fit into the reduced
superfluid region. The visibility of vortices in the particle
density is reduced at finite temperature due to the thermal
occupation of core states.

The most important outstanding issue to be addressed
in future work is the vortex coherence between the wells
of the optical lattice. For deep lattices such as are con-
sidered here the Josephson coupling between sites be-
comes small [42]. In this regime, vortex lines could
break up into disconnected ‘‘pancake’’ vortices in each
layer, rendering them unobservable experimentally. In the
high-Tc superconductors, this vortex decoupling occurs

when the anisotropy parameter � �
���������������
mz=m�

q
* 150
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FIG. 3. Density plots for the in-trap gap function "�x� (a),(b)
and number density n	�x� (c),(d) for � � 40 and #=!� � 0:4,
for which kBTc= �h!�  2:03. (a),(c) and (b),(d) correspond to
kBT= �h!� � 1 and 2, respectively [the T � 0 cases are shown
in Figs. 2(a) and 2(d)]. Each box is 16 �m on a side.
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[27,43] (mz andm� are the effective masses perpendicular
and parallel to the layers), though a full description of
such a decoupling transition is not yet complete [44].
Assumingmz � �h2=�@2"k=@k2� where "k is the dispersion
of the lowest-lying band near the trap center, the decou-
pling � corresponds to an optical lattice depth approach-
ing 70ER. This value is much lower and higher than those
of Refs. [7,16], respectively, suggesting that the melting of
well-defined vortex lines should be directly observable in
experiments employing Nd:YAG (but not CO2) lasers. A
full calculation incorporating interwell tunneling re-
mains necessary; the disappearance of vortices observed
experimentally could be due not only to vortex decou-
pling but also to the onset of a quantum Hall phase, which
is expected to restore the cylindrical symmetry broken by
the vortices.
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