
VOLUME 93, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S week ending
12 NOVEMBER 2004
Operational Representation of Quantum States Based on Interference

Alexander Wolf and Matthias Freyberger
Abteilung Quantenphysik, Universität Ulm, D-89069 Ulm, Germany

(Received 22 June 2004; published 10 November 2004)
200405-1
We describe a real-valued and periodic representation of quantum states. This representation can be
defined operationally using generalized position and momentum measurements on coupled systems. It
turns out that the emerging quantum interference terms encode the complete state information and also
allow us to formulate quantum dynamics. We discuss the close connection to the theory of analytic
functions.
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The interpretation of a quantum state is a persistent
problem since the early days of modern quantum me-
chanics [1]. Via the Born rule [2] it can be used to
calculate probabilities of measurement results. On this
level a quantum state basically serves as a technical
tool of the theory. The corresponding encoding in terms
of a Hilbert space vector j i, or in general, as a density
operator �̂ is a mathematically elegant and consistent way
to represent the complete knowledge about a quantum
system. This means that it successfully connects the mac-
roscopic actions undertaken for the preparation of a sys-
tem to the possible macroscopic observations [3]. The
state is, however, not a directly measurable quantity and
therefore has no immediate operational meaning.

Therefore, the concept of a quantum state differs cru-
cially from the concept of a classical state. In each clas-
sical theory of physics, the corresponding state of a
system always consists of a sufficient collection of mea-
surable quantities. Positions and momenta in classical
mechanics are the most prominent examples. As a con-
sequence any classical state has an operational meaning.
It is then rather straightforward to formulate a realistic
interpretation for classical theories in physics.

On the other hand quantum mechanics builds upon a
distinction between the state j i of a system and an
observable Â, which relates to the macroscopic signatures
of the system. The connection is made via the representa-
tion haj i defined by the scalar product with the eigen-
states jai of the Hermitian operator Â. The complex-
valued amplitude haj i is not a measurable quantity.
The corresponding probability distribution jhaj ij2 for
the eigenvalues has an operational meaning, but in gen-
eral it does not allow us to uniquely identify the state j i.

In analogy to the classical case of positions and mo-
menta one might suspect that the probability distributions
of complementary observables could be sufficient to de-
termine j i. However, well-known counterexamples can
be formulated already for massive particle in one dimen-
sion: its position distribution jhxj ij2 and the complemen-
tary momentum distribution jhpj ij2 do not [4] uniquely
represent the underlying state j i. One rather needs [5,6]
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the set of all tomographic distributions jhX�j ij2 for the
observable X̂� � x̂ cos�� p̂ sin� parametrized [7] by the
angle � 2 �0; 
�. Hence the complete state information is
here represented by an infinite ensemble of continuous
probability distributions.

One might argue that the quantum state contains all
potentialities that are macroscopically realized in the
interaction with a suitable measuring apparatus.
Therefore, we now pose the question of what type of a
conceptually simple measurement on a quantum particle
brings out the complete state information and provides an
operational representation of the state j i. In fact we will
show that such a measurement can be formulated on the
basis of generalized position and momentum observables.

Guided by the concept of a classical measurement we
compare the unknown particle to a known quantum ruler
[8]. This quantum ruler is assumed to be a calibrated
system for which we know all properties. Comparison
means that we scan positions and momenta of the quan-
tum particle relative to a set of known states j’i of the
ruler. This can be done [8,9] using the jointly measurable
observables X̂ 	 x̂0 
 x̂1 and P̂ 	 p̂0 � p̂1. Here the in-
dex 0 refers to the ruler and index 1 denotes the system to
be measured. The corresponding simultaneous eigen-
states jX;Pi for the pair �X;P� of eigenvalues allow us
to define the probability

W � jhX 	 0; P 	 0j’ij ij2 (1)

to find agreement in the positions and opposite momenta
of both systems [8]. This clearly corresponds to a com-
parison of the quantum ruler to the unknown system [10].
Actually one can immediately see that this operational
quantity W contains the complete information on the
state j ih j [11] for the coherent-state ruler j’i 	 j�
i.
In this case Eq. (1) reduces [8,12] to the Husimi function
1

 jh�j ij

2 which clearly determines j ih j if measured
for all parameters � in the complex plane [13,14].

However, the question arises of whether a more suitable
quantum ruler could be used. In particular, we would like
to exploit its quantum features. Therefore, we propose an
alternative comparison of system and ruler which is
 2004 The American Physical Society 200405-1
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based on quantum interference. The corresponding quan-
tum ruler is supposed to be in a superposition state j’i 	
N �j�
i � ei�j�
i� of two coherent states with a control-
lable phase � and normalization jN j
2 � 2�
2Refh�
j�
iei�g. In this case the operational probability,
Eq. (1), reads

W 	
jN j2



�jh�j ij2 � jh�j ij2 � 2Refei�h�j ih j�ig�:

(2)

In fact we will show that the quantum interference part of
this probability contains the full information on the state
j ih j in an elegant way. First we can isolate the pure
interference term by determining the probabilities,
Eq. (2), for the phases � 	 0 and � 	 
. Hence we can
operationally define the u function

u��� � ej�j
2=2Refh�j ih j�ig; � 2 closed curve;

(3)

where we assume the complex constant h�j i to be differ-
ent from zero [15]. This u function, that is the real-valued
interference part of the joint position-momentum proba-
bility, Equation (2), on an arbitrary closed curve in the
complex � plane contains the complete state j ih j. We
emphasize that this corresponds to a real-valued, one-
parametric representation which, in addition, is periodic.
Hence the representation of j ih j via the u function
turns out to be much simpler than representing it with
the help of any real-valued quasiprobability distribution.

In order to prove this completeness of the u function,
Eq. (3), we recall the expansion of coherent states j�i 	
e
�1=2�j�j2 P1

n	0��
n=

�����
n!

p
�jni in terms of Fock states jni

and notice that it represents the real part of the com-
pletely analytic function

f��� � ej�j
2=2h�j ih j�i 	 u��� � iv���: (4)

Thus the functions u and v satisfy the Cauchy-Riemann
equations ux 	 vy and uy 	 
vx with � � x� iy. Then
we remind ourselves that the real part u of an analytic
function fulfills Laplace’s equation uxx � uyy 	 0. Hence
for u given on a closed boundary it is also known inside.
Solving the just mentioned Cauchy-Riemann equations
determines the imaginary part v��� of the analytic func-
tion f���, Eq. (4), inside the boundary. The constant of
this integration is fixed by the requirement f��� 2 R.
Hence we have shown that the real-valued and operation-
ally defined u function, Eq. (3), is equivalent to the
knowledge of the complex coherent amplitude h�j i�
h j�i in a finite region of � space. Because of the over-
completeness of coherent states this is eventually suffi-
cient [13,16] to determine jh�j ij2j ih j which finally
only needs to be normalized [17].

So far we have given a general prove that the u func-
tion, given as the interference term of a joint �X;P�
measurement is a complete representation of the state
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j ih j. However, an explicit relation between measurable
values and the state was missing. In fact it sounds rather
complicated to proceed via solutions of Laplace’s equa-
tion and the Cauchy-Riemann relations. We will show
now that the required integrations are quite simple
when the u function, Eq. (3), is given on a circle � 	
Rei� with fixed radius R> 0. The corresponding analytic
function f���, Eq. (4), for j�j<R then follows immedi-
ately from the Schwarz relation [18,19]

f��� 	
Z 






d�
2


u�Rei��
Rei� � �

Rei� 
 �
� iv�� 	 0�; (5)

in which the constant v�0� is again determined by the
requirement f��� 2 R. In order to simplify the following
equations we now choose � 	 0. This means that we
define the u function, Eq. (3), relative to the vacuum
overlap h0j i [20]. Consequently, we obtain v�0� 	 0 in
Eq. (5). Then we rewrite Eq. (5) in the form

f��� 	
Z 






d�


u�Rei��

1

1
 �
Rei�



Z 






d�
2


u�Rei��:

(6)

Using the geometric series for �1
 ��=Rei���
1 yields

f��� 	
X1
n	0

fn
�n�����
n!

p (7)

with coefficients

fn � �2
 �n;0�

�����
n!

p

Rn
Z 






d�
2


u�Rei��e
in�: (8)

We emphasize that these coefficients are basically the
Fourier components of the 2
 periodic interference
term u�Rei��. Hence we have an explicit solution for
the analytic function f���, Eq. (4), which due to the
corresponding power series expansion, Eq. (7), can be
analytically continued on � space. Therefore, recalling
the construction of f���, Eq. (3), in terms of the coherent-
state j�i we also identify the unnormalized Fock coef-
ficients

h0j ih jni 	 fn (9)

of our state j ih j in terms of the Fourier components fn,
Eq. (8). Hence we arrive at an explicit Fourier relation
between the Fock representation and the 2
-periodic u
function, Eq. (3). In this respect one can argue that it also
provides a complete phase representation for the state
j ih j.

In Fig. 1 we show as an example the u function of a
specific coherent-state superposition. The two main con-
tributions are clearly visible. However, it would be desir-
able to extend the definition of the u function in such a
way that we can apply it to distinguish such coherent
superpositions from incoherent mixtures. Hence we need
a generalization of the u function for mixed states �̂. This
again can be done operationally by choosing the quantum
200405-2
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FIG. 2. Differences in the u functions of coherent and inco-
herent mixtures. In (a) we show the u function, Eq. (9), of the
superposition state N �jei
=2i � je
i
=2i� with coherent states
je�i
=2i. One clearly sees the additional contributions as com-
pared to (b) which depicts the u function of the incoherent
mixture �̂ 	 �jei
=2ihei
=2j � je
i
=2ihe
i
=2j�=2. Both plots
are parametrized by R 	 R0 	 3.
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FIG. 1. The u function, Eq. (2), of the superposition state
N �jei
=2i � je
i
=2i� (solid line) on a circle with radius R 	 3
and with � 	 0. We compare it to the corresponding function
of an ordinary coherent-state jei
=2i (dashed line). The two
main contributions of the superposition at � 	 �
=2 are
clearly visible. We emphasize that these real-valued and peri-
odic curves completely represent the underlying pure states.
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ruler to be in state j’i 	 N �j�i � ei�j�0
i�, in which
both coherent amplitudes �0 and � are varied on closed
curves and N denotes the respective normalization con-
stant. The corresponding probability, Eq. (1), to find X 	
0 and P 	 0 in the state �̂ � j’ih’j now leads to the
interference term Refh�
j�̂j�0ig which allows us to define

u��;�0� � ej�j
2=2�j�0j2=2Refh�
j�̂j�0ig; (10)

which is the real part of an analytic function f��;�0�.
Consequently, this generalized u function again contains
the complete state �̂ if � and �0 are given on closed
curves. In particular, for two circles � 	 Rei� and �0 	

R0ei�
0

one arrives at the Schwarz relation

f�a; a0� 	
Z 






Z 






d�
2


d�0

2

u�Rei�; R0ei��

�
�Rei� � ���R0ei�

0
� �0� 
 2��0

�Rei� 
 ���R0ei�
0

 �0�

: (11)

In analogy to the pure state case we then find the Fourier
decomposition

�mn 	 �2
 �m;0�n;0�

�����������
m!n!

p

RmR0n

Z 






Z 






d�
2


d�0

2


� u�Rei�; R0ei�
0
�e
im�
in�

0

(12)

for the Fock coefficients �mn � hmj�̂jni. Note that the
pure state case follows from Eq. (12) by putting m 	 0.
Hence a mixed state �̂ can be completely represented by a
real-valued quantity that depends on two periodic phase
parameters. This also allows us to demonstrate the dif-
ference in the u function, Eq. (10), of a coherent and
incoherent mixture, as shown in Fig. 2.

The additional contributions in the u function of the
coherent superposition are clearly visible. They stem
from the cross terms in the corresponding density opera-
tor and therefore demonstrate the coherence.
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So far we have discussed the u function as a represen-
tation of quantum states. This naturally leads to the
question how quantum dynamics looks like in this pic-
ture. Even though we cannot discuss the full theory here
we shall outline the essential points. The von-Neumann
equation i �h _̂� 	 �Ĥ; �̂� can in fact be rewritten in terms of
the generalized u function, Eq. (10). This leads, however,
for a general Hamiltonian Ĥ to a complicated system of
equations which we shall analyze elsewhere [21]. Never-
theless, we can exemplify the dynamics for the standard
system of a harmonic oscillator with Ĥ 	 �h!âyâ. In this
case the evolution of a pure state is determined by the
simple partial differential equation�

@
@t


!
@
@�

�
u�Rei�; t� 	 0; (13)

which only involves the ordinary u function, Eq. (3). This
relation can be proven using the Fourier relation, Eq. (8).
The corresponding solution

u�Rei�; t� 	 u�Rei��
!t�; 0� (14)

for the initial condition u�Rei��
!t�; 0� 	 u�Rei�� dem-
onstrates how clear the dynamics of a harmonic oscillator
becomes in terms of this representation.

We finally note that the expansion of ruler states in
terms of Fock states (harmonic oscillator eigenstates) is
not essential for the definition of an operational u func-
tion. One could think of a ruler represented by any system
with a complete set of eigenstates jani. A superposition of
200405-3
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the form
P
n��

n=
�����
n!

p
�jani would then be a suitable ruler

since it leads to the same analyticity arguments that have
been used in our analysis. Of course, the question remains
how to prepare such states in general. We have chosen
coherent states since for quantized electro-magnetic fields
preparations are known [22,23]. Moreover �X;P� mea-
surements can be performed at least in the optical domain
using eight-port homodyning [24,25].

In conclusion, we have shown that it is possible to
define an operational representation of quantum states
guided by a conceptually simple position and momen-
tum comparison between a quantum system and a quan-
tum ruler. Hence we have closely followed the classical
concept and found an alternative to real-valued quasi-
probability distributions. The representation is based on
real-valued quantum interference terms which domi-
nate the quantum comparison for appropriate ruler
states. Finally, we have briefly outlined the possibility
to formulate quantum dynamics with the help of this
representation. As the next step it is essential to further
investigate the dynamics of specific quantum systems
which might become particularly simple using the u
function.
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