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Equation of State of a Fermi Gas in the BEC-BCS Crossover: A Quantum Monte Carlo Study
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We calculate the equation of state of a two-component Fermi gas with attractive short-range
interspecies interactions using the fixed-node diffusion Monte Carlo method. The interaction strength
is varied over a wide range by tuning the value a of the s-wave scattering length of the two-body
potential. For @ > 0 and a smaller than the inverse Fermi wave vector our results show a molecular
regime with repulsive interactions well described by the dimer-dimer scattering length a,, = 0.6a. The
pair correlation functions of parallel and opposite spins are also discussed as a function of the

interaction strength.
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Recent experiments on two-component ultracold
atomic Fermi gases near a Feshbach resonance have
opened the possibility of investigating the crossover
from a Bose-Einstein condensate (BEC) to a Bardeen-
Cooper-Schrieffer (BCS) superfluid. In these systems the
strength of the interaction can be varied over a very wide
range by magnetically tuning the two-body scattering
amplitude. For positive values of the s-wave scattering
length a, atoms with different spins are observed to pair
into bound molecules which, at low enough temperature,
form a Bose condensate [1]. The molecular BEC state is
adiabatically converted into an ultracold Fermi gas with
a <0 and kpla|l < 1 [2], where standard BCS theory is
expected to apply. In the crossover region the value of |al
can be orders of magnitude larger than the inverse Fermi
wave vector k! and one enters a new strongly correlated
regime known as unitary limit [2,3]. In dilute systems,
for which the effective range of the interaction R, is much
smaller than the mean interparticle distance, krRy << 1,
the unitary regime is believed to be universal [4,5]. In this
regime, the only relevant energy scale should be given by
the energy of the noninteracting Fermi gas,
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The unitary regime presents a challenge for many-body
theoretical approaches because there is not any obvious
small parameter to construct a well-posed theory. The
first theoretical studies of the BEC-BCS crossover at zero
temperature are based on the mean-field BCS equations
[6]. More sophisticated approaches take into account the
effects of fluctuations [7], or include explicitly the bo-
sonic molecular field [8]. These theories provide a correct
description in the deep BCS regime, but are only quali-
tatively correct in the unitary limit and in the BEC
region. In particular, in the BEC regime the dimer-dimer
scattering length has been calculated exactly from the
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solution of the four-body problem, yielding a,, = 0.6a
[9]. Available results for the equation of state in this
regime do not describe correctly the repulsive molecule-
molecule interactions [10].

Quantum Monte Carlo techniques are the best suited
tools for treating strongly correlated systems. These
methods have already been applied to ultracold degener-
ate Fermi gases in a recent work by Carlson et al. [11]. In
this study the energy per particle of a dilute Fermi gas in
the unitary limit is calculated with the fixed-node Green’s
function Monte Carlo method (FN-GFMC) giving the
result E/N = £epg with & = 0.44(1). In a subsequent
work [12], the same authors have extended the FN-
GFMC calculations to investigate the equation of state
in the BCS and BEC regimes. Their results in the BEC
limit are compatible with a repulsive molecular gas, but
the equation of state has not been extracted with enough
precision.

In the present Letter, we report results for the equation
of state of a Fermi gas in the BEC-BCS crossover region
using the fixed-node diffusion Monte Carlo method (FN-
DMC). The interaction strength is varied over a very
broad range from —6 < —1/kpa < 6, including the uni-
tary limit and the deep BEC and BCS regimes. In the
unitary and in the BCS limit we find agreement, respec-
tively, with the results of Ref. [11] and with the known
perturbation expansion of a weakly attractive Fermi gas
[13]. In the BEC regime, we find a gas of molecules whose
repulsive interactions are well described by the dimer-
dimer scattering length a,, = 0.6a. Results for the pair
correlation functions of parallel and antiparallel spins
are reported in the various regimes. In the BEC regime
we find agreement with the pair correlation function of
composite bosons calculated using the Bogoliubov
approximation.

The homogeneous two-component Fermi gas is de-
scribed by the Hamiltonian
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where m denotes the mass of the particles, i, j,... and
i', j/, ... label, respectively, spin-up and spin-down parti-
cles and Ny = N, = N/2, N being the total number of
atoms. We model the interspecies interatomic interactions
using an attractive square-well potential: V(r) = —V,, for
r <Ry, and V(r) = 0 otherwise. In order to ensure that
the mean interparticle distance is much larger than the
range of the potential we use nR3 = 1076, where n =
k3./(37?) is the gas number density. By varying the depth
V, of the potential one can change the value of the s-wave
scattering length, which for this potential is given by a =
Ro[1 — tan(KoRy)/(KoRy)], where K3 = mV,/h*. We vary
K, is the range: 0 < Ky < 7/Ry. For KyRy < 7/2 the
potential does not support a two-body bound state and
a <0. For KyR, > /2, instead, the scattering length is
positive, a >0, and a molecular state appears whose
binding energy €, is determined by the transcenden-
tal equation +/|€,|m/h*R,tan(KR,)/(KR,) = —1, where
K? = K} — |eylm/R*. The value K, = 7/(2R,) corre-
sponds to the unitary limit where |a| = o0 and €, = 0.

In a FN-DMC simulation the function f(R,7) =
Yr(R)V(R, 7), where W(R, 7) denotes the wave function
of the system and ¢7(R) is a trial function used for
importance sampling, is evolved in imaginary time 7 =
it/h according to the Schrodinger equation

_ w = —DV%f(R, 7) + DVR[F(R)f(R, 7)]

In the above equation R = (r,..,ry), E.(R)=
Yr(R)""Hipr(R) denotes the local energy, F(R)=
2y (R)"'Vrpr(R) is the quantum drift force, D =
h?/(2m) plays the role of an effective diffusion constant,
and E; is a reference energy introduced to stabilize the
numerics. The energy and other observables of the state of
the system are calculated from averages over the asymp-
totic distribution function f(R, 7 — 00). To ensure posi-
tive definiteness of the probability distribution f for
fermions, the nodal structure of ¢ is imposed as a
constraint during the calculation. It can be proved that,
due to this nodal constraint, the calculated energy is an
upper bound to the eigenenergy for a given symmetry
[14]. In particular, if the nodal surface of ) were exact,
the fixed-node energy would also be exact.

In the present study we make use of the following trial
wave functions. A BCS wave function

Ypcs(R) = A(@(r11) (ry)... d(ryn), 4)

and a Jastrow-Slater (JS) wave function
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where ‘A is the antisymmetrizer operator ensuring the
correct antisymmetric properties under particle ex-
change. In the JS wave function, Eq. (5), the plane wave
orbitals have wave vectors k, = 27/L(€,,% + €,,9 +
€,.2), where L is the size of the periodic cubic box fixed
by nL?® = N, and ¢ are integer numbers. The correlation
functions ¢(r) and ¢(r) in Egs. (4) and (5) are con-
structed from solutions of the two-body Schrodinger
equation with the square-well potential V(r). In particu-
lar, in the region a > 0 we take for the function ¢(r) the
bound-state solution ¢,,(r) with energy €, and in the
region a < 0 the unbound-state solution corresponding
to zero scattering energy: ¢,,(r) = (Ry — a)sin(Kyr)/
[rsin(KyRy)] for r <R, and ¢, (r) =1—a/r for r>
Ry. In the unitary limit, |a| — o0, ¢, (r) = ¢,,(r).

The JS wave function ¢, Eq. (5), is used only in the
region of negative scattering length, a < 0, with a Jastrow
factor ¢(r) = ¢,,(r) for r <R. In order to reduce pos-
sible size effects due to the long range tail of ¢,,(r), we
have used ¢(r) = C; + C, exp(—ar) for r > R, with R <
L/2 a matching point. The coefficients C; and C, are
fixed by the continuity condition for ¢(r) and its first
derivative at r = R, whereas the parameter a >0 is
chosen in such a way that ¢(r) goes rapidly to a constant.
Residual size effects have been finally determined carry-
ing out calculations with an increasing number of parti-
cles N = 14, 38, and 66. In the inset of Fig. 1 we show the
dependence of the energy per particle E/N on N in the
unitary limit. Similar studies carried out in the BEC and
BCS regime show that the value N = 66 is optimal since
finite-size corrections in the energy are below the re-
ported statistical error in the whole BEC-BCS crossover.
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FIG. 1. Energy per particle in the BEC-BCS crossover. Solid

symbols refer to results obtained with the trial wave function
pcs; open symbols refer to the ones obtained with ¢;5. The
dot-dashed line is the expansion (6) holding in the BCS region
and the dotted line corresponds to the binding energy €;,/2.
Inset: finite-size effects in the unitary limit —1/kpa = 0.
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We have also checked that effects due to the finite range
R, of the potential are negligible.

The FN-DMC energies for N = 66 atoms and the po-
tential V(r) with nR} = 107 are shown in Fig. 1 and in
Table I as a function of the interaction parameter —1/kpa.
The numerical simulations are carried out both with the
BCS wave function, Eq. (4), and with the JS wave func-
tion, Eq. (5). For —1/kpa > 0.4 we find that i;g gives
lower energies, whereas for smaller values of —1/kga,
including the unitary limit and the BEC region, the
function igcg is preferable. This behavior reflects the
level of accuracy of the variational ansatz for the nodal
structure of the trial wave function. We believe that in the
intersection region, —1/kpa ~ 0.4, both wave functions
rpcs and g give a poorer description of the exact nodal
structure of the state, resulting in a less accurate estimate
of the energy. In the BCS region, —1/kpa > 1, our results
for E/N are in agreement with the perturbation expansion
of a weakly attractive Fermi gas [13,15]

E 10 4(11 — 210g2)
4 g+ o T 208
97 F4 2112

(kpa)2 + ...

(6)

In the unitary limit we find E/N = £epg, with & =
0.42(1). This result is compatible with the findings of
Refs. [11,12] obtained using a different trial wave func-
tion which includes both Jastrow and BCS correlations.
The value of the parameter 8 = ¢ — 1 has been measured
in experiments with trapped Fermi gases [2,3], but the
precision is too low to make stringent comparisons with
theoretical predictions. In the region of positive scattering
length E/N decreases by decreasing kpa. At approxi-
mately —1/kpa =~ —0.3, the energy becomes negative,
and by further decreasing kra it rapidly approaches the
binding energy per particle €,/2 indicating the formation
of bound molecules [12]. The results with the binding
energy subtracted from E/N are shown in Fig. 2. In the

NEFG

TABLE I. Energy per particle and binding energy in the
BEC-BCS crossover (energies are in units of epg).

—1/kga E/N €,/2 E/N — €,/2
-6 —73.170(2) —73.1804 0.010(2)
—4 —30.336(2) —30.3486 0.013(2)
-2 ~7.071(2) ~7.1018 0.031(2)
-1 —1.649(3) —~1.7196 0.071(3)
0.4 —0.087(6) —0.2700 0.183(6)
-0.2 0.223(1) —0.0671 0.29(1)
0 0.42(1) 0 0.42(1)
0.2 0.62(3) 0 0.62(3)
0.4 0.72(3) 0 0.72(3)
1 0.79(2) 0 0.79(2)
2 0.87(1) 0 0.87(1)
4 0.92(1) 0 0.92(1)
6 0.94(1) 0 0.94(1)
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BEC region, —1/kya < —1, we find that the FN-DMC
energies agree with the equation of state of a repulsive gas
of molecules

E/N—¢,/2 5 128
= kpa,| 1 + ——(kra,, 3/2+...}
€rG 187" [ 5V kram)

(7

where the first term corresponds to the mean-field energy
of a gas of molecules of mass 2m and density n/2 inter-
acting with the positive molecule-molecule scattering
length a,,, and the second term corresponds to the first
beyond mean-field correction [16]. If for a,, we use the
value calculated by Petrov et al. [9] a,, = 0.6a, we obtain
the curves shown in Fig. 2. If, instead, we use a,, as a
fitting parameter to our FN-DMC results in the region
—1/kra = —1, we obtain the value a,,/a = 0.62(1). A
detailed knowledge of the equation of state of the homo-
geneous system is important for the determination of the
frequencies of collective modes in trapped systems [17],
which have been recently measured in the BEC-BCS
crossover regime [18].

In Fig. 3 we show the results for the pair correlation
function of parallel, gTzT(r), and antiparallel spins, gTzl(r).
For parallel spins, gg(r) must vanish at short distances
due to the Pauli principle. In the BCS regime the effect of
pairing is negligible and gTzT(r) coincides with the pre-
diction of a noninteracting Fermi gas gg(r) =1-9/
(kpr)*[sin(kpr)/kpr — cos(kpr)]>. This result continues
to hold in the unitary limit and it shows that in this
regime the Fermi wave vector is not renormalized due
to interactions, in agreement with the theory of Landau
Fermi liquids [19]. In the BEC regime the static structure
factor S(k) of composite bosons can be estimated using
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FIG. 2. Energy per particle in the BEC-BCS crossover with
the binding energy subtracted from E/N. Solid symbols: results
with ¢gcg; open symbols: results with 5. The dot-dashed line
is as in Fig. 1 and the dashed line corresponds to the expansion
(7) holding in the BEC regime. Inset: enlarged view of the BEC
regime —1/kpa = —1.The solid line corresponds to the mean-
field energy [first term in the expansion (7)]; the dashed line
includes the beyond mean-field correction [Eq. (7)].
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FIG. 3. Pair correlatiog function of parallel, gTzT(r), and (inset)

of antiparallel spins, g5(r), for —1/kra =0 (unitary limit),
—1/kpa = —4 (BEC regime), —1/kra = 4 (BCS regime) and
for a noninteracting Fermi gas (FG). The dot-dashed line
corresponds to the pair correlation function of a Bose gas
with a,, = 0.6a and —1/kpa = —4 calculated using the
Bogoliubov approximation.

the Bogoliubov result: S(k) = h%k*/[2M w(k)], where
w(k) = (F*k*/AM? + gn,,i*k*/M)'/? is the Bogoliubov
dispersion relation for particles with mass M = 2m, den-
sity n,, = n/2 and coupling constant g = 4wh’a,,/M.
The pair distribution function g,(r) of composite bosons,
obtained through g,(r) =1+ 2/NY[S(k) — 1]e~ kT
using the value a,, = 0.6a, is shown in Fig. 3 for
—1/kpa = —4 and compared with the FN-DMC result.
For large distances r > a,,, where Bogoliubov approxi-
mation is expected to hold, we find a remarkable agree-
ment. This result is consistent with the equation of state in
the BEC regime and shows that structural properties of
the ground-state of composite bosons are described cor-
rectly in our approach. For antiparallel spins, gTzl(r) ex-
hibits a large peak at short distances due to the attrac-
tive interaction. In the BEC regime the short-range be-
havior is well described by the exponential decay gTzl(r) o

exp(—2ry/|€,|lm/h)/r? fixed by the molecular wave func-
tion ¢,,(r). In the unitary regime correlations extend
over a considerably larger range compared to the tightly
bound BEC regime. In the BCS regime the range of ggl(r)
is much larger than k5! and is determined by the coher-
ence length &, = hi%kp/(mA), where A is the gap parame-
ter. In this regime the wave function we use does not
account for pairing and is inadequate to investigate the
behavior of gTzl(r).

In conclusion, we have carried out a detailed study of
the equation of state of a Fermi gas in the BEC-BCS
crossover using FN-DMC techniques. In the BCS regime
and in the unitary limit our results are in agreement with
known perturbation expansions and with previous
FN-GFMC calculations [11,12], respectively. In the
BEC regime, we recover the equation of state of a gas
of composite bosons with repulsive effective interactions
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which are well described by the molecule-molecule scat-
tering length a,, = 0.6a recently calculated in Ref. [9].
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