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Quantum mechanics forbids deterministic discrimination among nonorthogonal states. Nonetheless,
the capability to distinguish nonorthogonal states unambiguously is an important primitive in quantum
information processing. In this work, we experimentally implement generalized measurements in an
optical system and demonstrate the first optimal unambiguous discrimination between three non-
orthogonal states, with a success rate of 55%, to be compared with the 25% maximum achievable using
projective measurements. Furthermore, we present the first realization of unambiguous discrimination
between a pure state and a nonorthogonal mixed state.
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Quantum measurement theory poses fundamental
limitations on the amount of information that can be
obtained about the state of a single quantum system.
Specifically, it is impossible to perfectly discriminate
between two or more nonorthogonal quantum states.
However, by appropriately choosing a set of measure-
ments, nondeterministic state discrimination is possible
if the system has been prepared in a member of a pre-
viously specified set of nonorthogonal states. Quantum
state discrimination plays an important role in quantum
information and quantum communications [1] and is at
the heart of quantum cryptography protocols [2].

Several different strategies have been developed to
accomplish state-discrimination tasks. ‘‘Minimum-
error discrimination’’ (MD) seeks a ‘‘best guess’’ on every
trial, minimizing the rate of incorrect guesses. Helstrom
showed [3] that, for MD of two states, the optimal strat-
egy can always be achieved by a (von Neumann) projec-
tive measurement. ‘‘Unambiguous state-discrimination’’
(UD), on the other hand, seeks to determine with cer-
tainty which state the system was in. This can be done
only on some fraction of the trials, the others being
termed ‘‘inconclusive,’’ and the optimal UD success rate
cannot always be achieved with projective measurements.
For the case of two pure nonorthogonal quantum states
with equal a priori probability, the maximum probability
of success was derived by Ivanovic and Dieks and Peres
[4]. Clearly, these two strategies may be regarded as
limiting cases of a more general approach with both a
finite inconclusive rate and a finite error rate [5]. Of
course, in any experimentally realistic situation, even
an ideal ‘‘unambiguous’’ discrimination strategy will
not be error-free. It is of great importance to understand
the theoretical and practical limitations, since state dis-
crimination is part of quantum key distribution protocols,
and because the effect of a hypothetical eavesdropper’s
attack on such cryptosystems requires knowledge of the
maximum information she could extract.
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As for the experimental state of the art, for two non-
orthogonal states UD was qualitatively demonstrated by
Huttner et al. [6], while MD was demonstrated by Barnett
and Riis [7]. Clarke et al. demonstrated UD quantitatively
for a pair of nonorthogonal states [8]. In a second experi-
ment, using highly symmetric trine and tetrad states
(linearly dependent states in two dimensions), they per-
formed optimum MD and also a projective measurement
which could indicate that a qubit was not prepared in one
out of three or four possibilities [9]. Thus, all of the
previous experiments have been limited to nonorthogonal
pure states of a qubit in a two-dimensional Hilbert space.
In the present work, by constructing a multirail optical
interferometer enabling us to perform a large class of
generalized measurements, we extend these results to
higher-dimensional Hilbert spaces with no restriction
on the symmetry of the states and explicitly demonstrate
that we can achieve a significantly higher success rate
than any projective measurement. We perform the first
optimal unambiguous state discrimination for three non-
orthogonal states, showing that the experimental success
rate may be as much as twice as high as for any
von Neumann measurement scheme.We also demonstrate
the first optimal quantum state ‘‘filtering,’’discriminating
between two subsets of a set of three nonorthogonal
states. This is equivalent to discrimination between a
pure and a mixed state [10,11].

Unambiguous state discrimination between N states
has N � 1 outcomes: the N possible conclusive results,
and the inconclusive result. Since no projective measure-
ment in an N-dimensional Hilbert space can have more
than N outcomes, generalized measurements are re-
quired. Generalized measurements (or positive-operator
valued measures, POVMs) provide the most general
means of transforming the state of a quantum system
[3,12]. POVMs can be implemented by embedding the
system into a larger Hilbert space and unitarily entan-
gling it with the extra degrees of freedom (ancilla) [13].
 2004 The American Physical Society 200403-1
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FIG. 1. (a) Eight-port optical interferometer: suitable beam
splitters are placed at each crossing of two optical rails to
realize any desired unitary transformation on the input states.
A detection in rail 4 corresponds to an inconclusive result and a
detection in rails 1 to 3 corresponds to states j 1i to j 3i.
(b) Experimental layout: this interferometer can perform vari-
ous desired generalized measurement by doing arbitrary uni-
tary operations in four-dimensional Hilbert space and
projective measurements at output ports 1 to 4. The variable
beam splitters (VBS) realize the corresponding beam splitters
in (a) for arbitrary reflectivity and transmissions. Photodiodes
PD1 to PD4 detect the photons at the output ports 1 to 4.

VOLUME 93, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S week ending
12 NOVEMBER 2004
Postselection (projective measurement) of the ancilla in-
duces an effective nonunitary transformation of the origi-
nal system. By an appropriate design of the entangling
unitary, this effective nonunitary transformation can turn
an initially nonorthogonal set of states into a set of
orthogonal states with a finite probability of success.
The optimum strategy is the one that maximizes the
average probability of success for this procedure. The
generalization of [4] to more than two states was devel-
oped by several groups [14,15].

The problem of distinguishing among two subsets of a
set of N nonorthogonal quantum states has been termed
‘‘quantum state filtering’’ for the case when one subset
contains one state and the otherN � 1 [10]. Unambiguous
filtering has been studied by Sun et al. for N � 3 in [16]
and for arbitrary N in [17]. Quantum state filtering can
also be interpreted as unambiguous discrimination be-
tween two mixed states. Let us consider the case of
three nonorthogonal states, fj 1i; j 2i; j 3ig with a priori
probabilities of �1, �2, and �3. Filtering is the optimal
strategy that can distinguish the state j 1i from the subset
fj 2i; j 3ig. This is equivalent to discriminating the pure
state j 1ih 1j, with a priori probability of �1, from the
mixed state 	�2j 2ih 2j � �3j 3ih 3j
=	�2 � �3
, with
a priori probability of �2 � �3.

Here, we present our experimental data for imple-
menting the optimal POVM both for the case of full
UD of and filtering from N � 3 linearly independent
nonorthogonal states. In our experiment the generalized
measurement was realized by utilizing linear optical
elements and photodetectors, based on the proposal of
[18]. This can be accomplished by a single-photon repre-
sentation of the initial states and output states, a multirail
optical network for performing the unitary transforma-
tion [19,20], and photodetectors at each output port to
carry out the required nonunitary transformation. The
N � 1-dimensional unitary operation can be implemented
by an appropriate multipath optical interferometer
[18,19]. For the case of three nonorthogonal states,
fj 1i; j 2i; j 3ig, living in a 3D Hilbert space, an eight-
port optical interferometer was constructed to perform
transformations in the 4D system � ancilla space. All
beam splitters in this interferometer were designed (using
a combination of polarizing beam splitters and wave
plates) to have variable reflectivity, so that the appropriate
interferometer could be implemented for any desired
discrimination problem (see Fig. 1).

By using beam splitters to send one photon into some
linear superposition of the first three rails, we can gen-
erate arbitrary quantum states in this three-dimensional
Hilbert space, represented as j iin �

P3
j�1 cjâ

y
j j0i, where

P3
j�1 jcjj

2 � 1, and âyj is the creation operator for the jth
optical rail. Note that the fourth rail, which acts as the
ancilla, never contains a photon. The interferometer is
designed to perform the unitary operation U which
optimizes state discrimination. It maps the input field
200403-2
operators âyk into output field operators as âyk �
P4
j�1Ujkâ

y
jout

, such that the initial state evolves into

j iout �
Pj�4
j�1

Pk�3
k�1Ujkckâ

y
jout

j0i. A photon in mode 4
now indicates an inconclusive result. On the other hand,
a photon in mode 1, 2, or 3 unambiguously indicates that
the initial state was j 1i, j 2i, or j 3i, respectively.

The actual experimental setup is shown in Fig. 1(b). To
demonstrate unambiguous discrimination, and character-
ize the success and error rates of our setup, we performed
the experiment using a large ensemble of identically
prepared photons from a diode laser operating at
780 nm. The nonorthogonal states were prepared by using
an arrangement of polarizing beam splitters (PBSs),
half-wave plates, and phase shifters. A 1-mm-thick glass
slide, at an angle of 55� to the incident beam, was used as
a phase shifter. At this angle a differential rotation of
0:05� of the phase shifter produces a � phase shift and
causes a beam displacement of less than a micron. Each
nonorthogonal state consisted of a different superposition
of light in rails 1–3, with the relative field amplitude
being adjusted to generate the appropriate coefficients
cj. Rail 4 contained the vacuum for all input states [21].
We designed a VBS that could be placed at each crossing
200403-2
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FIG. 2. Experimental data: the results of state discrimination
and of state filtering for the cases of a � 0:25 and a � 0:5,
respectively, are presented in parts (a), (b), and (c). Each row
corresponds to preparation of a pure or a mixed quantum state.
The last column in each figure represents the inconclusive
outcomes. The diagonal and off-diagonal elements of other
columns represent the successful and erroneous detections,
respectively. The probability of each outcome is a measure of
the fraction of photons reaching the corresponding detector.
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of the beams in Fig. 1(a), in order to perform arbitrary 4D
unitaries. The VBS consists of three half-wave plates and
two PBSs [22]. The polarizing beam splitters are used to
convert information between spatial and polarization de-
grees of freedom, such that instead of arbitrary coupling
between two spatial modes, we need only to implement
arbitrary coupling between two polarizations, easily ac-
complished using wave plates. The setup was designed
such that in all interferometers, all the spatial path
lengths are always balanced.

To perform the discrimination or filtering for a specific
set of three nonorthogonal states, with equal a priori
probabilities, the optimal success probability and output
states were calculated following the method in [16].
Using the input and output states in the larger Hilbert
space, the corresponding unitary transformation was then
calculated and factorized into a sequence of beam splitter
transformations. By rotation of the half-wave plates in
each of theVBSs the desired transmission and reflectivity
were achieved. The experiments were carried out by
preparing one of the three nonorthogonal states at a
time and measuring the current at the photodiodes PD1
through PD4. For obtaining the probability of an indi-
vidual photon reaching each detector, the signals at these
detectors were normalized to their sum.

In order to demonstrate state discrimination with this
experimental setup we examined the set of three non-
orthogonal pure states j 1i � 	

��������
2=3

p
; 0; 1=

���
3

p

 and

j 2;3i � 	0;�1=
���
3

p
;

��������
2=3

p

. The optimal output states,

in the total Hilbert space, are found to be j 1iout �

	1=
���
3

p
; 0; 0;

��������
2=3

p

, j 2iout � 	0;

��������
2=3

p
; 0;

��������
1=3

p

, and

j 3iout � 	0; 0;
��������
2=3

p
;

��������
1=3

p

. The desired unitary trans-

formation was achieved by using two VBSs with the
transmission coefficients t14 � t34 � 1=

���
2

p
(and t � 1

for the rest of the VBSs), and an additional 50=50 beam
splitter to couple output rails 2 and 3.

The experimental results are shown in Fig. 2.
Figure 2(a) pertains to the case when all states are dis-
criminated. The average probability of success was mea-
sured to be 54.5%. The probability of obtaining an
erroneous result was about 3%. These errors were mainly
the result of imperfect visibility (due to imperfect align-
ment and angular uncertainty in the wave plate settings),
drift, and uncertainty in phase adjustment, where a 12�

phase error on one beam corresponds to a 2% error rate.
For this set the optimal POVM is predicted to yield
conclusive outcomes 55.6% of the time. By comparison,
any projection valued measurement (PVM) strategy has a
success probability of less than 33.3%. This is because the
only way a PVM can guarantee that we had j ii is to
project onto the unique state orthogonal to all input
vectors j j�ii. In this case, all three such vectors are
nonorthogonal, so no orthonormal set of projectors can
include more than one of them; no more than one of the
three states can be unambiguously distinguished. Given
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equal a priori probabilities, this means that PVMs can
succeed no more than 33.3% of the time. In fact, for our
input states the optimum PVM is the one that picks out
j 2i (or j 3i, their success probabilities being equal), with
a 25.4% probability of success. In the above example we
have shown an improvement of more than a factor of 2
over any possible projective measurement.

For quantum state filtering we considered a family of
three-state sets, j 1i � 	

��������������
1� a2

p
; 0; a
 and j 2;3i �

	0;�1=
���
2

p
; 1=

���
2

p

, characterized by the real parameter

a > 0. The goal was to unambiguously distinguish j 1i
from the other two states fj 2i; j 3ig, each of which has
an overlap of a��

2
p with j 1i. The optimal output states are

j 1iout � 	
������������
1� a

p
; 0; 0;

���
a

p

 and j 2;3iout � 	0;�1=

���
2

p
;���������������������

	1� a
=2
p

;
��������
a=2

p

. The unitary transformation for opti-

mal filtering was achieved by beam splitters with pa-
200403-3



TABLE I. Experimental and theoretical success probabilities
of POVMs vs the optimal PVM for State Filtering (SF, for a �
0:25 and a � 0:5) and State-Discrimination (SD).

SF 	a � 0:25
 SF 	a � 0:50
 SD

POVMexp 82% 66% 54.5%
POVMth 83.3% 66.6% 55.6%
PVMth 64.6% 58.3% 25.4%
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rameters t14 � 1=
������������
1� a

p
and t34 �

������������
1� a

p
, and t � 1 for

the other VBSs in the setup. For these sets of states, the
optimal success probabilities PVMs and POVMs are
	2� a2
=3 and 1� 	2a
=3, respectively.

The experiments were performed for a � 0:25 and a �
0:5. Figure 2(b) pertains to the case a � 0:25. The aver-
age probability of success for discriminating the state j 1i
from fj 2;3ig was measured to be about 82%, consistent
with the theoretical prediction of 83.3%. There was an
error rate of about 1.7%. The advantage of the POVM
measurements over error-free projective measurements
was found to be about 17.4% for this case. For a � 0:5,
Fig. 2(c), the probability of success was found to be about
66%, with an error probability of less than 1.3%. This can
be compared with the theoretical predictions of 66.6%. In
this case the advantage over PVMs reduces to 7.7%. As we
argued above, these filtering experiments are equivalent
to discrimination between the pure state �1 � j 1ih 1j,
with �1 � 1=3, and the mixed state �23 � 	j 2ih 2j �
j 3ih 3j
=2, with �23 � 2=3. The experimental results
are summarized in Table I.

In conclusion, we have presented the first explicit ex-
perimental demonstration that POVMs can achieve a
lower inconclusive rate than any projective measurements
for unambiguous discrimination between nonorthogonal
states, using an optical interferometer to implement arbi-
trary unitary operations in a four-dimensional Hilbert
space. We have demonstrated the first optimal unambig-
uous discrimination between three linearly independent
nonorthogonal pure states, as well as the first experimen-
tal realization of unambiguous discrimination between a
pure and a mixed quantum state (quantum state filtering).
A significant advantage of generalized measurement over
projective measurement was observed. Unambiguous
state discrimination plays an important role in the field
of quantum information processing and has applications
to quantum cryptography [2], quantum cloning [23],
quantum state separation [24], and entanglement concen-
tration [1,14]. Some quantum information tasks are likely
to take advantage of three- or higher-dimensional Hilbert
spaces [25], where the advantage of POVMs becomes
increasingly significant, as observed here. We believe
that generalized optical networks like the one demon-
strated here will be of use for a wide variety of small-
scale quantum information tasks [22,26] and will prove
particularly important for devices such as repeaters and
cloners in quantum communications systems.
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