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Optimizing the Vertebrate Vestibular Semicircular Canal: Could We Balance Any Better?
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The fluid-filled semicircular canals (SCCs) of the vestibular system are used by all vertebrates to
sense angular rotation. Despite masses spanning seven decades, all mammalian SCCs are nearly the
same size. We propose that the SCC represents a sensory organ that evolution has “optimally designed.”
Four geometric parameters characterize the SCC, and ““building materials” of given physical properties
are assumed. Identifying physical and physiological constraints on SCC operation, we find the most
sensitive SCC has dimensions consistent with available data. Since natural selection involves opti-
mization, this approach may find broader use in understanding biological structures.
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Simple physical principles and scaling arguments have
been remarkably effective in understanding organismic
and evolutionary properties of the animal kingdom [1].
Sensory organs, which transduce physical stimuli into
neural signals, are particularly well suited for physical
analysis. The biophysics of the cochlea, for example, has
been the focus of much recent study [2].

Here we focus on a different inner-ear organ: the fluid-
filled semicircular canals (SCCs) that each of the roughly
45000 vertebrate species employs to mechanically sense
rotation [3,4]. Rotation sensation is imperative for bal-
ance, but plays an equally important role in vision. The
neural output of the SCCs feeds directly to the oculomo-
tor system, causing a reflexive motion of the eyes that
compensates for head motion. This allows you to read this
article even while shaking your head, which would be
much more difficult if the article itself were shaken.

Previously, we studied ‘““top-shelf vertigo,” a mechani-
cal disorder of the human SCC [5]. Here, we address a
rather astonishing fact: the SCCs of every mammal, from
mice to whales, are essentially the same size (Fig. 1) [6,7].
Mammals span seven decades in mass and almost three in
length, yet SCC dimensions are restricted to less than one.
In fact, the SCC of the human fetus reaches its full adult
size by the 14th week of pregnancy [8]. Fish, reptile,
amphibian, and bird SCCs are of similar size [6], the
one apparent exception being sharks (discussed below)
[7]. In exploring reasons for the constancy of cell size,
Vogel writes, “anything biological that does not vary in
size ought to strike us as noteworthy” [1]. Similarly, SCC
nonscaling suggests that these particular dimensions may
be special to, and perhaps optimal for, their function.

The idea that biological structures are “optimal” has
recently found rather dramatic support. Microcavities in
the brittle star skeleton act as perfect lenses [9], and sea
sponges develop single-mode optical fibers that rival cur-
rent technology [10]. The human visual system operates at
the single-photon level [11], and the auditory system is
limited by thermal noise [12]. In fact, evolution can be
viewed as a gradient search seeking to optimize ‘“fit-
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ness”’; however, the utility of this approach is often lim-
ited by the difficulty of defining fitness. By contrast, the
semicircular canals have a well-defined purpose, and
reasonable measures of their quality can be proposed.
Herein, we suggest that the “universal” size of the
SCCs can be understood in terms of a system which has
been “optimally designed” by evolution. Others have
examined the relation between SCC sensitivity and ge-
ometry from a purely fluid standpoint [6,7], but ignored
the elastic membrane and sensory hair cells that complete
the transduction process, and which depend on SCC di-
mensions. Our approach is as follows: we start with SCC
“blueprints” without dimensions (Fig. 2), and assume
basic building materials (solid walls, fluid endolymph,
elastic material, and hair cells) to be given. Identifying
physically and physiologically reasonable constraints, we
find a unique set of well-constrained and robust optimal
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FIG. 1. Measured values of R and d for mammals [6,7].

Despite seven decades of mass variation, variations in R and
d are limited to about one decade. Solid (dashed) horizontal
lines reflect optimal (tolerant) SCC dimensions (12)—(15).
Rough measurements of ¢ and ¢ for mammals [25] reveal ¢ ~
0.15-0.44 mm and ¢ ~ 0.17-0.5 mm (cf. optimal ¢ = 0.12 and
t=0.12).
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FIG. 2. (a) The semicircular canal is a torus of major radius
R, with a long narrow duct of radius d spanning an angle
B4. (b) The ampulla contains an elastic cupula of thickness ¢
and radius ¢, which distorts under SCC rotation, causing
embedded hair cell stereocilia to deflect a distance ¢ and
trigger a neural signal. Measured values (in mm) for humans
are {Ry, ¢;,, d;, t,} = {2.8,0.44,0.19, 0.31} [25]. (¢) SCC opera-
tion: (i) Angular velocity is impulsively accelerated to €} at ¢,
and the cupula distorts by V. « ). (ii) Under sustained rota-
tion, the cupula relaxes and forgets (). (iii) Upon decelerating
to rest at ¢4, fluid inertia causes a (negative) cupular displace-
ment, eliciting dizziness.

dimensions that maximize SCC sensitivity. Moreover,
they are consistent with measured data (Fig. 1).

We begin with a description of basic SCC structure
(Fig. 2). Each ear contains three mutually orthogonal
SCCs to span the three rotation axes. Each SCC is a
hollow torus of major radius R that consists of a narrow
duct of radius d and a bulbous ampulla of radius c, all
filled with waterlike endolymph of density p and viscosity
m. The cupula, a mucus membrane of thickness ¢ and
radius ¢, completely spans the ampulla to block fluid flow
[Fig. 2(b)] [3]. Along one wall sit sensory hair cells, from
which bundles of stereocilia (of length Ay = 50 um
[13]) project into the cupula. Thus cupular deformations
displace stereocilia and trigger neural signals.

Basic SCC function is shown in Fig. 2(c). An impulsive
angular acceleration a(f) = Q,6(¢t — t,), viewed in the
rest frame of the canal, gives rise to ballistic endolymph
motion with initial angular velocity (). Viscous resist-
ance from the walls cuts off this inertial motion after a
time 7; (~5 ms in humans), during which a volume V.
QO of fluid passes through the canal and distorts the
cupula [Fig. 2(c), part (i)]. The elastic restoring force of
the distorted cupula drives fluid back through the narrow
duct. Viscous resistance from duct walls slows cupular
relaxation to a time scale 7, (4-7 s in humans and
primates [14,15]), so that V. encodes angular velocity
Q) for ¢t < 7,. Under sustained rotation, however, the
cupula relaxes [Fig. 2(c), part (ii)] and ‘“‘forgets” the
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constant rotation rate {),. Upon stopping, the sudden
deceleration displaces the cupula in the opposite direction
[Fig. 2(c), part (iii)], causing dizziness (the false sensa-
tion of rotation). The shorter the 7, the more quickly an
organism becomes dizzy.

Simple arguments give scaling relations for SCC pro-
cesses. Fluid “knows” that walls are accelerating only
after vorticity created at the walls diffuses (with diffu-
sivity ¥ = u/p) to the duct center, giving an inertial time
Tp~ dz/v. During T, fluid moves ballistically with ve-
locity QgR, so that a fluid volume V. ~ (wd?)QyR7;
travels through the duct. Once inertia is cut off, the cupula
relaxes quasistatically, as the elastic restoring pressure
AP = KV, drives a Poiseuille flow V., ~ APd*/uB,R,
assuming viscous resistance to be dominated in the nar-
row duct. An ordinary differential equation for V.. results,
whose solutions decay exponentially on a time scale
Ts ™ /"LBdR/Kd4

Prefactors were obtained by solving for the time-
dependent flow due to an impulsive acceleration, giving

_ 8uBaR
Kmd*’

(D

where Ay = 2.4 is the first zero of the Bessel function J,
and @ = 1.3 is a geometric factor [16].

The final physical ingredient involves elastic deforma-
tions of the cupula, which we treat as a clamped plate of
modulus E; = E'(1 — 0?) and Poisson ratio o [17]. A
plate of bending rigidity Dy, = E't?/12 obeys DyV*w =
AP, giving a deformed profile w = wy,[1 — (r/c)*]%,
where wy,.« = APc*/64D, [18]. Integrating, we obtain
the cupular stiffness K = AP,./V,,

. 47d*Ra d>

V.=—7—Q, TP=—, T
¢ Xy 0 Y *

161

K=E— —, 2)

T C
whose value K = 4.6 GPa/m? is derived using (1) and
measured values of 7,=4s. This implies E' =
2 dyn/cm?, consistent with measurements for mucus [19].

Having described the mechanical response, we now
connect cupular displacement w to stereociliar tip dis-
placement  (and thus to a neural firing rate f). Hair cells
have a high resting discharge rate f, and are bidirection-
ally sensitive, so that deflections in either direction can be
sensed quickly [3]. Within each bundle, stereociliar tips
are linked by filamentous *“‘gating springs” that open or
close ion channels when the tips are displaced, and f
changes linearly with (small)  [20]. In other inner-ear
organs, hair cells adapt rapidly (<100 ms) [20]; SCC hair
cell adaptation requires much longer (tens of seconds)
[21] and is ignored here. Since the tips are embedded in
the cupula, { varies with V, via

422 1212
{ = —QHWmax = —41.1
C mc

V. for Ay <Kec. 3)
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Measurements on 5—-10 um utricular and cochlear hair
cells indicate a threshold displacement £, ~ O(nm) for
neural activity, and gating spring models predict ¢, to
vary with hair cell length [20]. One expects SCC hair
cells, roughly 10 times longer, to have £, ~ O(10 nm). A
similar value can be obtained in another fashion:
Physiological measurements indicate a lower limit
Qin = 2°/s for sensation in humans [22], which implies

gmin ~ 20 nm (4)

using (1) and (3). An upper limit on measurable rotation
comes from natural firing rate limits: f must be positive
but below a maximum (injured) rate ~400 Hz. In squirrel
monkeys, Af = a{), where a = 0.24/° [15]. Zeroing
deflections {, occur for Af ~ f, = 100 Hz, implying a
“zeroing” rotation ,., = f,/a = 420°/s, giving
oo = 4 pm. As expected, this is about 10 times larger
than .., measured for utriclar hair cells [23].

The sensitivity S of an SCC follows from (1) and (3),
with minimum detectable rotation (.,

_ A

min — 5,22 _ 4p minESil min* 5
4803 a d*R 4 & ®)

We have now characterized the mechanical-neural sig-
nal transduction process and can examine the effect of
varying SCC dimensions. We scale SCC variables by their
human values, denote scaled variables with hats, and pose
the central question: Given blueprints (Fig. 2) and basic
building materials (w, p, E', Ay, {min» and ), what
dimensions {R, ¢ d,7} maximize SCC sensitivity
§=d'R/e*

Certain constraints, however, must be obeyed for a
physically and a physiologically viable SCC. First, ther-
mal fluctuations of the cupula must be small enough to
escape detection, or else balance and vision would be
impaired. The probability of a cupular displacement fluc-
tuation V, is given by P(V,) ~ exp(—KV2/2kzT). We use
(2) and (3) to express P(V,) in terms of £, giving P({) =
2Jo/mexp(—a{?), where o = wE'c*t}/18kzTA},. The
probability of sensing a thermal fluctuation is given by
P({> Cmin) = 1 — erf(o'l/zélmin)- Requiring P({ > {in)
to be smaller than some value € = 107> gives

184k, T
7TE/§2

min

R 1/3
623> (9.7 ) =A=0.15. (6)

i
Note that A is rather insensitive to e: A(107°) = 0.16 and
A(107%) = 0.14.

Second, the cupula should encode angular velocity for
as long as possible. The smaller the 7, the sooner angular
velocity is “forgotten” and dizziness ensues. Requiring
7, to be larger than some minimum time 7}' gives

Re6 - 2E'T" rd}
a*e mBa Ryc

= B =0.25, @)

and we take 7' = 1 s as a basic estimate.
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Third, the maximum cupular deflection w,,,, for physi-
ological rotations should be small (compared to f), to
avoid damaging the cupula and for a linear response.
The zeroing rotation ()., is one example, giving

A 2
E I oy, )
t gzero Ccy

Rotations {),,,, which zero the neural signal, but may still
be physiologically relevant, also impose a constraint. As a
basic estimate, we take Q.. = 27 rad/s, which gives
d*R - Ay ar, _
&t 12a'S)max dé}tRh

D =4.5. 9

Finally, the ampulla must fit in the canal,
R/é>2c;,/R, = E = 0.32, (10)
and the cupula should be platelike for uniform ¢,
é/t>1,/c, = F = 0.70. (11)

Constraints (6)—(11) restrict parameter space signifi-
cantly (Fig. 3).

Equations (5)—(11) represent a nonlinear multidimen-
sional optimization, but an equivalent linear optimization
is obtained by taking the logarithm of each equation. As
in linear programming, extrema are found at vertices of
the constraint equations (or —oo, since logs can be nega-
tive). Here, the most sensitive SCC geometry is found at
vertices A, B, D, and F, giving dimensions

. (BD)!/?
R= ( Fl =21, ¢&é=(AF)?>=026  (12)
. AY20p1/8 /10 A
and a sensitivity S,
S =DA3SF8/5 = 24, (14)

that is about 24 times greater than the human SCC. As
seen in Fig. 1, these dimensions compare quite favorably
with available data—particularly since such an optimum
need not exist in the first place, and, even if it did, its
dimensions could have differed from those found in
nature by many orders of magnitude.

Two parameters (., and 7") were chosen some-
what arbitrarily, and it is natural to question how these
choices affect the above results. Only R and d depend on
these choices, but weakly: R ~ (7/Q.)"/* and d ~
(77" Q) ~ /8. For R to change by an order of magnitude,
7" /Q . Must be off by two, so the optimum is robust
and insensitive to these crude choices. Variations in 7%
and )., across species would lead to only slight differ-
ences in optimal SCC dimensions; such variations could
perhaps explain the slight slopes in Fig. 1. For example,
“physiological” rotation rates (and thus ,,.) almost
certainly decrease with organism size, giving optimal R
and d that increase slightly with mass.

198106-3



VOLUME 93, NUMBER 19

PHYSICAL REVIEW

week ending

LETTERS 5 NOVEMBER 2004

A /
R B

10 /

0.1

0.1 o 10

FIG. 3. A 2D slice of 4D parameter space showing the con-
strained space available for viable SCC design. Constraints
(6)—(11) are labeled A-F. Also plotted is the sensitivity gra-
dient and, for reference, human SCC dimensions. The optimal
SCC is found at the vertex of constraints A, B, D, and F.

While the above analysis assumes perfect “machine
tools,” nature’s machinery has a rather larger tolerance:
variations in human SCC dimension are of order 10%
[24]. To allow for imperfect ‘“machining,” we find the
most sensitive “tolerant” SCC such that 10% variations in
any dimension satisfy constraints A—F, giving

R=19, ¢=033 d=046, ©=038 (15)

with a relative sensitivity §=~17.sCC sensitivity varia-
tions due to size variations range from about 0.4 to 2.5
times that of the “average” canal.

No constraint on measurement time TFWas introduced,
although it plays an important role in vision: to be
“watched,” an image must be kept within one retinal
fovea—about 1° in humans [3]. In the time 7, following
an (), impulse, the eye/fovea lags the image by A6 ~
Q7/, so that the maximum rotation allowing a fixed gaze
is Q, ~ 1°/7, ~200°/s. If a larger (), were required, d
would be further constrained.

Although we have explicitly discussed mammals, the
same SCC dimensions are found in all vertebrates, with a
few notable exceptions. Head size is an obvious and un-
avoidable constraint for exceedingly small fish larvae,
whose SCCs start small and grow with the fish [7]. As a
group, sharks (even small ones) have abnormally large
SCCs (R ~ 40 mm) [7]. Since sharks broke from other
vertebrates quite early in evolution, perhaps differences
in building materials (E or hair cell properties) exist.

In summary, we have argued that evolution has con-
verged on an optimal design for a maximally sensitive
rotation detector. The optimal SCC is well constrained,
with little room for variations, and falls within a factor of
5 of available data. The optimum itself is robust and
depends on basic mechanics and established hair cell
properties; the ‘“‘calibrating” assumptions made herein
are self-consistent, but not essential for this central result.
It would be interesting to see whether this approach will
be useful in understanding other biological systems.
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